226
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Analysis of Glaucoma Associated Genes in Response to Inflammation, an Examination of a Public Data Set Derived from Peripheral Blood from Patients with Hepatitis C

ORCID Icon, ORCID Icon, &
Pages 2093-2103 | Published online: 23 Jun 2022

References

  • Levy JH. The human inflammatory response. J Cardiovasc Pharmacol. 1996;27(Suppl 1):S31–7. doi:10.1097/00005344-199600001-00008
  • Conti P, Caraffa A, Tetè G, et al. Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19. J Biol Regul Homeost Agents. 2020;34(5):1629–1632. doi:10.23812/20-2edit
  • Allison K, Patel D, Alabi O. Epidemiology of glaucoma: the past, present, and predictions for the future. Cureus. 2020;12(11):e11686. doi:10.7759/cureus.11686
  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–1911. doi:10.1001/jama.2014.3192
  • Cohen LP, Pasquale LR. Clinical characteristics and current treatment of glaucoma. Cold Spring Harb Perspect Med. 2014;4(6):a017236–a017236. doi:10.1101/cshperspect.a017236
  • Sng CC, Ang M, Barton K. Uveitis and glaucoma: new insights in the pathogenesis and treatment. Prog Brain Res. 2015;221:243–269. doi:10.1016/bs.pbr.2015.06.008
  • Harun-Or-Rashid M, Inman DM. Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. J Neuroinflammation. 2018;15(1):313. doi:10.1186/s12974-018-1346-7
  • Shestopalov VI, Spurlock M, Gramlich OW, Kuehn MH. Immune responses in the glaucomatous retina: regulation and dynamics. Cells. 2021;10(8):Aug. doi:10.3390/cells10081973
  • Williams PA, Marsh-Armstrong N, Howell GR, Lasker II. Neuroinflammation in glaucoma: a new opportunity. Exp Eye Res. 2017;157:20–27. doi:10.1016/j.exer.2017.02.014
  • Doucette LP, Walter MA. Prostaglandins in the eye: function, expression, and roles in glaucoma. Ophthalmic Genet. 2017;38(2):108–116. doi:10.3109/13816810.2016.1164193
  • Lorenzo MM, Devlin J, Saini C, et al. The prevalence of autoimmune diseases in patients with primary open-angle glaucoma undergoing ophthalmic surgeries. Ophthalmol Glaucoma. 2022;5(2):128–136. doi:10.1016/j.ogla.2021.08.003
  • Gramlich OW, Godwin CR, Wadkins D, Elwood BW, Kuehn MH. Early functional impairment in experimental glaucoma is accompanied by disruption of the GABAergic system and inceptive neuroinflammation. Int J Mol Sci. 2021;22(14):7581. doi:10.3390/ijms22147581
  • Miserocchi E, Waheed NK, Dios E, et al. Visual outcome in herpes simplex virus and varicella zoster virus uveitis: a clinical evaluation and comparison. Ophthalmology. 2002;109(8):1532–1537. doi:10.1016/s0161-6420(02)01113-2
  • Thean JH, Hall AJ, Stawell RJ. Uveitis in Herpes zoster ophthalmicus. Clin Exp Ophthalmol. 2001;29(6):406–410. doi:10.1046/j.1442-9071.2001.d01-29.x
  • Morris RW, Dunbar MT. Atypical presentation and review of the ICE syndrome. Optometry. 2004;75(1):13–25. doi:10.1016/s1529-1839(04)70007-x
  • Keorochana N, Treesit I, Funarunart P. Characteristics and clinical outcomes of hypertensive anterior uveitis. Ocul Immunol Inflamm. 2020;28(4):538–548. doi:10.1080/09273948.2019.1587471
  • Singh PK, Kasetti RB, Zode GS, Goyal A, Juzych MS, Kumar A. Zika virus infects trabecular meshwork and causes trabeculitis and glaucomatous pathology in mouse eyes. mSphere. 2019;4(3). doi:10.1128/mSphere.00173-19
  • Lim LL, Scarborough JD, Thorne JE, et al. Uveitis in patients with autoimmune hepatitis. Am J Ophthalmol. 2009;147(2):332–338 e1. doi:10.1016/j.ajo.2008.08.019
  • Thrift AP, El-Serag HB, Kanwal F. Global epidemiology and burden of HCV infection and HCV-related disease. Nat Rev Gastroenterol Hepatol. 2017;14(2):122–132. doi:10.1038/nrgastro.2016.176
  • Grebely J, Prins M, Hellard M, et al. Hepatitis C virus clearance, reinfection, and persistence, with insights from studies of injecting drug users: towards a vaccine. Lancet Infect Dis. 2012;12(5):408–414. doi:10.1016/S1473-3099(12)70010-5
  • Qian F, Bolen CR, Jing C, et al. Impaired toll-like receptor 3-mediated immune responses from macrophages of patients chronically infected with hepatitis C virus. Clin Vaccine Immunol. 2013;20(2):146–155. doi:10.1128/CVI.00530-12
  • Fortier ME, Kent S, Ashdown H, Poole S, Boksa P, Luheshi GN. The viral mimic, polyinosinic: polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2004;287(4):R759–66. doi:10.1152/ajpregu.00293.2004
  • Tang B, Li S, Cao W, Sun X. The association of oxidative stress status with open-angle glaucoma and exfoliation glaucoma: a systematic review and meta-analysis. J Ophthalmol. 2019;2019:1803619. doi:10.1155/2019/1803619
  • Sobot V, Stamenkovic M, Simic T, et al. Association of GSTO1, GSTO2, GSTP1, GPX1 and SOD2 polymorphism with primary open angle glaucoma. Exp Eye Res. 2022;214:108863. doi:10.1016/j.exer.2021.108863
  • Santana-Garrido A, Reyes-Goya C, Fernandez-Bobadilla C, et al. NADPH oxidase-induced oxidative stress in the eyes of hypertensive rats. Mol Vis. 2021;27:161–178.
  • Kim CD, Gudiseva HV, McGeehan B, et al. Association of the SNP rs112369934 near TRIM66 gene with POAG endophenotypes in African Americans. Genes. 2021;12(9):1420. doi:10.3390/genes12091420
  • Zhang Y, Yang A, Huang J. Identification of gene changes induced by dexamethasone in the anterior segment of the human eye using bioinformatics analysis. Med Sci Monit. 2019;25:5501–5509. doi:10.12659/MSM.915591
  • Liu H, Qi S, He W, Chang C, Chen Y, Yu J. Association of single-nucleotide polymorphisms in TLR4 gene and gene-environment interaction with primary open angle glaucoma in a Chinese northern population. J Gene Med. 2020;22(1):e3139. doi:10.1002/jgm.3139
  • Huang P, Qi Y, Xu YS, et al. Serum cytokine alteration is associated with optic neuropathy in human primary open angle glaucoma. J Glaucoma. 2010;19(5):324–330. doi:10.1097/IJG.0b013e3181b4cac7
  • Wong M, Huang P, Li W, Li Y, Zhang SS, Zhang C. T-helper1/T-helper2 cytokine imbalance in the iris of patients with glaucoma. PLoS One. 2015;10(3):e0122184. doi:10.1371/journal.pone.0122184
  • Jiang B, Harper MM, Kecova H, et al. Neuroinflammation in advanced canine glaucoma. Mol Vis. 2010;16:2092–2108.
  • Barbosa-Breda J, Himmelreich U, Ghesquiere B, Rocha-Sousa A, Stalmans I. Clinical metabolomics and glaucoma. Ophthalmic Res. 2018;59(1):1–6. doi:10.1159/000479158
  • Beutgen VM, Perumal N, Pfeiffer N, Grus FH. Autoantibody biomarker discovery in primary open angle glaucoma using Serological Proteome Analysis (SERPA). Front Immunol. 2019;10:381. doi:10.3389/fimmu.2019.00381
  • Chang D, Sha Q, Zhang X, et al. The evaluation of the oxidative stress parameters in patients with primary angle-closure glaucoma. PLoS One. 2011;6(11):e27218. doi:10.1371/journal.pone.0027218
  • Duncan RS, Rohowetz L, Vogt A, Koulen P. Repeat exposure to polyinosinic: polycytidylic acid induces TLR3 expression via JAK-STAT signaling and synergistically potentiates NFkappaB-RelA signaling in ARPE-19 cells. Cell Signal. 2020;66:109494. doi:10.1016/j.cellsig.2019.109494
  • Engin KN, Yemisci B, Yigit U, Agachan A, Coskun C. Variability of serum oxidative stress biomarkers relative to biochemical data and clinical parameters of glaucoma patients. Mol Vis. 2010;16:1260–1271.
  • Fraenkl SA, Muser J, Groell R, et al. Plasma citrate levels as a potential biomarker for glaucoma. J Ocul Pharmacol Ther. 2011;27(6):577–580. doi:10.1089/jop.2011.0062
  • Hindle AG, Thoonen R, Jasien JV, et al. Identification of candidate miRNA biomarkers for glaucoma. Invest Ophthalmol Vis Sci. 2019;60(1):134–146. doi:10.1167/iovs.18-24878
  • Romano GL, Platania CB, Forte S, Salomone S, Drago F, Bucolo C. MicroRNA target prediction in glaucoma. Prog Brain Res. 2015;220:217–240. doi:10.1016/bs.pbr.2015.04.013
  • Tezel G, Thornton IL, Tong MG, et al. Immunoproteomic analysis of potential serum biomarker candidates in human glaucoma. Invest Ophthalmol Vis Sci. 2012;53(13):8222–8231. doi:10.1167/iovs.12-10076
  • Bodh SA, Kumar V, Raina UK, Ghosh B, Thakar M. Inflammatory glaucoma. Oman J Ophthalmol. 2011;4(1):3–9. doi:10.4103/0974-620X.77655
  • Vohra R, Tsai JC, Kolko M. The role of inflammation in the pathogenesis of glaucoma. Surv Ophthalmol. 2013;58(4):311–320. doi:10.1016/j.survophthal.2012.08.010
  • Tezel G, Wax MB. Glaucoma. Chem Immunol Allergy. 2007;92:221–227. doi:10.1159/000099273
  • Tezel G. The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res. 2011;93(2):178–186. doi:10.1016/j.exer.2010.07.009
  • Lorenzini T, Fliegauf M, Klammer N, et al. Characterization of the clinical and immunologic phenotype and management of 157 individuals with 56 distinct heterozygous NFKB1 mutations. J Allergy Clin Immunol. 2020;146(4):901–911. doi:10.1016/j.jaci.2019.11.051
  • Wah LP, Singh D, Abdul Ghani S, Shoeb Ahmad S. The dynamics of aqueous humor outflow—A major review. US Ophthalmic Review. 2014;07(02). doi:10.17925/usor.2014.07.02.137
  • Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–59. doi:10.2174/1874364101004010052
  • Luo J, Wang S, Zhou Z, Zhao ZY. Ad- and AAV8-mediated ABCA1 gene therapy in a murine model with retinal ischemia/reperfusion injuries. Mol Ther Methods Clin Dev. 2021;20:551–558. doi:10.1016/j.omtm.2021.01.012
  • Li L, Xu L, Chen W, et al. Reduced Annexin A1 secretion by ABCA1 causes retinal inflammation and ganglion cell apoptosis in a murine glaucoma model. Front Cell Neurosci. 2018;12:347. doi:10.3389/fncel.2018.00347
  • Mohd Nasir NA, Agarwal R, Krasilnikova A, Sheikh Abdul Kadir SH, Iezhitsa I. Effect of dexamethasone on the expression of MMPs, adenosine A1 receptors and NFKB by human trabecular meshwork cells. J Basic Clin Physiol Pharmacol. 2020;31(6). doi:10.1515/jbcpp-2019-0373
  • Howell GR, Macalinao DG, Sousa GL, et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest. 2011;121(4):1429–1444. doi:10.1172/JCI44646
  • Marola OJ, Syc-Mazurek SB, Howell GR, Libby RT. Endothelin signaling in glaucomatous neurodegeneration. Invest Ophthalmol Vis Sci. 2019;60(9):661.
  • van Koolwijk LM, Ramdas WD, Ikram MK, et al. Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet. 2012;8(5):e1002611. doi:10.1371/journal.pgen.1002611
  • Coca-Prados M, Escribano J, Ortego J. Differential gene expression in the human ciliary epithelium. Prog Retin Eye Res. 1999;18(3):403–429. doi:10.1016/S1350-9462(98)00026-3
  • Prasanna G, Dibas A, Hulet C, Yorio T. Inhibition of Na(+)/K(+)-ATPase by endothelin-1 in human nonpigmented ciliary epithelial cells. J Pharmacol Exp Ther. 2001;296(3):966–971.
  • Golubnitschaja O, Wunderlich K, Decker C, Monkemann H, Schild HH, Flammer J. Molecular imaging of perfusion disturbances in glaucoma. Amino Acids. 2002;23(1–3):293–299. doi:10.1007/s00726-001-0141-3
  • Agapova OA, Ricard CS, Salvador-Silva M, Hernandez MR. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes. Glia. 2001;33(3):205–216. doi:10.1002/1098-1136(200103)33:3<205::aid-glia1019>3.0.co;2-d
  • Hu C, Niu L, Li L, et al. ABCA1 regulates IOP by modulating Cav1/eNOS/NO signaling pathway. Invest Ophthalmol Vis Sci. 2020;61(5):33. doi:10.1167/iovs.61.5.33
  • Chen Y, Lin Y, Vithana EN, et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat Genet. 2014;46(10):1115–1119. doi:10.1038/ng.3078
  • van Oterendorp C. Endocrine dysfunction in open angle glaucoma. [Endokrine Auffalligkeiten beim Offenwinkelglaukom]. Klin Monbl Augenheilkd. 2021;238(2):128–131. doi:10.1055/a-1306-1033
  • Janssen SF, Gorgels TG, Ramdas WD, et al. The vast complexity of primary open angle glaucoma: disease genes, risks, molecular mechanisms and pathobiology. Prog Retin Eye Res. 2013;37:31–67. doi:10.1016/j.preteyeres.2013.09.001
  • Joe MK, Tomarev SI. Expression of myocilin mutants sensitizes cells to oxidative stress-induced apoptosis: implication for glaucoma pathogenesis. Am J Pathol. 2010;176(6):2880–2890. doi:10.2353/ajpath.2010.090853
  • Mayer U. Comparative investigations of catalase activity in different ocular tissues of cattle and man. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1980;213(4):261–265. doi:10.1007/BF00417548
  • Micera A, Quaranta L, Esposito G, et al. Differential protein expression profiles in glaucomatous trabecular meshwork: an evaluation study on a small primary open angle glaucoma population. Adv Ther. 2016;33(2):252–267. doi:10.1007/s12325-016-0285-x
  • Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet. 2019;28(21):3637–3663. doi:10.1093/hmg/ddz222
  • Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Autoantigens in the trabecular meshwork and glaucoma-specific alterations in the natural autoantibody repertoire. Clin Transl Immunol. 2020;9(3):e01101. doi:10.1002/cti2.1101
  • Wang DY, Ray A, Rodgers K, et al. Global gene expression changes in rat retinal ganglion cells in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51(8):4084–4095. doi:10.1167/iovs.09-4864
  • Zanon-Moreno V, Asensio-Marquez EM, Ciancotti-Oliver L, et al. Effects of polymorphisms in vitamin E-, vitamin C-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma. Mol Vis. 2013;19:231–242.
  • Fairless E, Kooragayala K, Karakulah G, et al. Distinct expression of heat shock proteins in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci. 2016;57(12):2258.
  • Golubnitschaja O, Flammer J. What are the biomarkers for glaucoma? Surv Ophthalmol. 2007;52 Suppl 2(6):S155–61. doi:10.1016/j.survophthal.2007.08.011
  • Nath AP, Ritchie SC, Byars SG, et al. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol. 2017;18(1):146. doi:10.1186/s13059-017-1279-y
  • Bhattacharya SK, Lee RK, Grus FH. Molecular biomarkers in glaucoma. Invest Ophthalmol Vis Sci. 2013;54(1):121–131. doi:10.1167/iovs.12-11067
  • Ghaffariyeh A, Honarpisheh N, Heidari MH, Puyan S, Abasov F. Brain-derived neurotrophic factor as a biomarker in primary open-angle glaucoma. Optom Vis Sci. 2011;88(1):80–85. doi:10.1097/OPX.0b013e3181fc329f
  • Schmelter C, Perumal N, Funke S, Bell K, Pfeiffer N, Grus FH. Peptides of the variable IgG domain as potential biomarker candidates in primary open-angle glaucoma (POAG). Hum Mol Genet. 2017;26(22):4451–4464. doi:10.1093/hmg/ddx332
  • Fourgeux C, Martine L, Bjorkhem I, et al. Primary open-angle glaucoma: association with cholesterol 24S-hydroxylase (CYP46A1) gene polymorphism and plasma 24-hydroxycholesterol levels. Invest Ophthalmol Vis Sci. 2009;50(12):5712–5717. doi:10.1167/iovs.09-3655
  • Sun C, Zhang H, Jiang J, et al. Angiogenic and inflammatory biomarker levels in aqueous humor and vitreous of neovascular glaucoma and proliferative diabetic retinopathy. Int Ophthalmol. 2020;40(2):467–475. doi:10.1007/s10792-019-01207-4