222
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Current State of Knowledge in Ocular Blood Flow in Glaucoma: A Narrative Review

ORCID Icon
Pages 2599-2607 | Received 12 Jul 2023, Accepted 24 Aug 2023, Published online: 31 Aug 2023

References

  • Pandey HC, Coshic P, C CS, Arcot PJ, Kumar K. Blood supply management in times of SARS‐CoV‐2 pandemic–challenges, strategies adopted, and the lessons learned from the experience of a hospital‐based blood centre. Vox Sang. 2021;116(5):497–503.
  • Wu X, Konieczka K, Liu X, et al. Role of ocular blood flow in normal tension glaucoma. Adv Ophthal Pract Res. 2022;16:100036. doi:10.1016/j.aopr.2022.100036
  • Bayraktar S, Ipek A, Takmaz T, Yildiz Tasci Y, Gezer MC. Ocular blood flow and choroidal thickness in ocular hypertension. Int Ophthalmol. 2022;1:1–2.
  • Trivli A, Koliarakis I, Terzidou C, et al. Normal-tension glaucoma: pathogenesis and genetics. Exp Ther Med. 2019;17(1):563–574. doi:10.3892/etm.2018.7011
  • Vernazza S, Tirendi S, Bassi AM, Traverso CE, Saccà SC. Neuroinflammation in primary open-angle glaucoma. J Clin Med. 2020;9(10):3172. doi:10.3390/jcm9103172
  • Harris A, Guidoboni G, Siesky B, et al. Ocular blood flow as a clinical observation: value, limitations and data analysis. Prog Retin Eye Res. 2020;78:100841.
  • Ferrara M, Lugano G, Sandinha MT, Kearns VR, Geraghty B, Steel DH. Biomechanical properties of retina and choroid: a comprehensive review of techniques and translational relevance. Eye. 2021;35(7):1818–1832. doi:10.1038/s41433-021-01437-w
  • Grudzińska E, Modrzejewska M. Modern diagnostic techniques for the assessment of ocular blood flow in myopia: current state of knowledge. J Ophthalmol. 2018;2018:1–8. doi:10.1155/2018/4694789
  • Meola M, Ibeas J, Lasalle G, Petrucci I. Basics for performing a high-quality color Doppler sonography of the vascular access. J Vasc Access. 2021;22(1_suppl):18–31. doi:10.1177/11297298211018060
  • Vosborg F, Malmqvist L, Hamann S. Non-invasive measurement techniques for quantitative assessment of optic nerve head blood flow. Eur J Ophthalmol. 2020;30(2):235–244. doi:10.1177/1120672119858891
  • Tripathi S, Ariga M, Srinivasan MM. Ocular blood flow in glaucoma. TNOA J Ophthal Sci Res. 2020;58(3):180. doi:10.4103/tjosr.tjosr_81_20
  • Divya K, Kanagaraju V, Devanand B, Jeevamala C, Raghuram A, Sundar D. Evaluation of retrobulbar circulation in type 2 diabetic patients using color Doppler imaging. Indian J Ophthalmol. 2020;68(6):1108. doi:10.4103/ijo.IJO_1398_19
  • Tiwari US, Singh M, Aishwarya A, Gupta A, Chhabra K. Comparison of flow velocity in ophthalmic artery between glaucomatous and normal subjects. Roman J Ophthalmol. 2019;63(4):346. doi:10.22336/rjo.2019.54
  • Banou L, Dastiridou A, Giannoukas A, et al. The role of color Doppler imaging in the diagnosis of glaucoma: a review of the literature. Diagnostics. 2023;13:588. doi:10.3390/diagnostics13040588
  • Krzyżanowska-Berkowska P, Czajor K, Iskander DR. Associating the biomarkers of ocular blood flow with lamina cribrosa parameters in normotensive glaucoma suspects. Comparison to glaucoma patients and healthy controls. PLoS One. 2021;16(3):e0248851. doi:10.1371/journal.pone.0248851
  • Motoyama Y, Hayashi H, Kawanishi H, et al. Ocular blood flow by laser speckle flowgraphy to detect cerebral ischemia during carotid endarterectomy. J Clin Monit Comput. 2021;35:327–336. doi:10.1007/s10877-020-00475-1
  • Lu Y, Wang RK. Removing dynamic distortions from laser speckle flowgraphy using Eigendecomposition and spatial filtering. J Biophoton. 2022;15(1):e202100294. doi:10.1002/jbio.202100294
  • Calzetti G, Fondi K, Bata AM, et al. Assessment of choroidal blood flow using laser speckle flowgraphy. Br J Ophthalmol. 2018;102(12):1679–1683. doi:10.1136/bjophthalmol-2017-311750
  • Kikuchi S, Miyake K, Tada Y, et al. Laser speckle flowgraphy can also be used to show dynamic changes in the blood flow of the skin of the foot after surgical revascularization. Vascular. 2019;27(3):242–251. doi:10.1177/1708538118810664
  • Heeman W, Steenbergen W, van Dam GM, et al. Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt. 2019;24:080901. doi:10.1117/1.JBO.24.8.080901
  • Vinnett A, Kandukuri J, Le C, et al. Dynamic alterations in blood flow in glaucoma measured with laser speckle contrast imaging. Ophthalmol Glaucoma. 2022;5(3):250–261. doi:10.1016/j.ogla.2021.10.005
  • Mursch-Edlmayr AS, Luft N, Podkowinski D, Ring M, Schmetterer L, Bolz M. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep. 2018;8(1):5343. doi:10.1038/s41598-018-23149-0
  • Gumus M, Eker S, Karakucuk Y, Ergani AC, Emiroglu HH. Retinal and choroidal vascular changes in newly diagnosed celiac disease: an optical coherence tomography angiography study. Indian J Ophthalmol. 2022;70(3):866. doi:10.4103/ijo.IJO_1009_21
  • Giraldo Herrera CE, Giraldo Herrera CE. The cavern of the eye: seeing through the retina. Microb Other Sham Beings. 2018;2018:119–133.
  • Szulc U, Dąbrowska E, Pieczyński J, et al. How to measure retinal microperfusion in patients with arterial hypertension. Blood Press. 2021;30(1):4–19. doi:10.1080/08037051.2020.1823816
  • Benjamin JJ, Biggs H, Berger A, et al. The entoptic field camera as metaphor-driven research-through-design with AI technologies. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems; 2023:1–19.
  • Konovalova NV, Khramenko NI, Guzun OV, Serebrina TM. On the treatment of degeneration of the macula and posterior pole. J Ophthalmol. 2019;1:486.
  • Jensen PK, Bek T. Eye Microcirculation. In: Clinically Applied Microcirculation Research. Routledge; 2019:191–200.
  • Dervenis N, Harris A, Coleman AL, et al. Factors associated with non-active retinal capillary density as measured with confocal scanning laser Doppler flowmetry in an elderly population: the Thessaloniki Eye Study (TES). Br J Ophthalmol. 2020;104(9):1246–1253. doi:10.1136/bjophthalmol-2019-315212
  • Zhang Q, Jonas JB, Wang Q, et al. Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation. Sci Rep. 2018;8(1):1–8. doi:10.1038/s41598-017-17765-5
  • Braaf B, Donner S, Uribe-Patarroyo N, Bouma BE, Vakoc BJ. A neural network approach to quantify blood flow from retinal OCT intensity time-series measurements. Sci Rep. 2020;10(1):1–3. doi:10.1038/s41598-020-66158-8
  • Christinaki E, Kulenovic H, Hadoux X, et al. Retinal imaging biomarkers of neurodegenerative diseases. Clin Exper Optomet. 2022;105(2):194–204. doi:10.1080/08164622.2021.1984179
  • Holm S, Henson D, McLoughlin N. Comparison of two metrics for non-invasive reti-nal oximetry in humans. In: Optical Imaging of Retinal Blood Flow: Studies in Automatic Vessel Extraction, Alignment, and Driven Changes in Vessel Oximetry. The University of Manchester; 2018:79.
  • Stefánsson E, Olafsdottir OB, Eliasdottir TS, et al. Retinal oximetry: metabolic imaging for diseases of the retina and brain. Prog Retin Eye Res. 2019;70:1–22. doi:10.1016/j.preteyeres.2019.04.001
  • Yap ZL, Verma S, Lee YF, Ong C, Mohla A, Perera SA. Glaucoma related retinal oximetry: a technology update. Clin Ophthalmol. 2018;4:79–84. doi:10.2147/OPTH.S128459
  • Král M, Svrčinová T, Hok P, et al. Correlation between retinal oxygen saturation and the haemodynamic parameters of the ophthalmic artery in healthy subjects. Acta Ophthalmol. 2022;100(7):e1489–95. doi:10.1111/aos.15189
  • Pappelis K, Choritz L, Jansonius NM. Microcirculatory model predicts blood flow and autoregulation range in the human retina: in vivo investigation with laser speckle flowgraphyAmerican. J Physiol. 2020;319(6):H1253–73. doi:10.1152/ajpheart.00404.2020
  • Işik MU, Akay F, Akmaz B, Güven YZ, Şahin ÖF. Evaluation of subclinical alterations in retinal layers and microvascular structures with OCT and OCTA in healthy young short-term smokers. Photodiagnosis Photodyn Ther. 2021;36:102482. doi:10.1016/j.pdpdt.2021.102482
  • You QS, Chan JC, Ng AL, et al. Macular vessel density measured with optical coherence tomography angiography and its associations in a large population-based study. Invest Ophthalmol Vis Sci. 2019;60(14):4830–4837. doi:10.1167/iovs.19-28137
  • Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefe’s Arch Clin Exper Ophthalmol. 2018;256:1499–1508. doi:10.1007/s00417-018-3965-1
  • Zabel K, Zabel P, Suwala K, et al. Alterations in fixation indices in primary open-angle glaucoma by microperimetry. J Clin Med. 2022;11(9):2368. doi:10.3390/jcm11092368
  • Wei X, Balne PK, Meissner KE, Barathi VA, Schmetterer L, Agrawal R. Assessment of flow dynamics in retinal and choroidal microcirculation. Surv Ophthalmol. 2018;63(5):646–664. doi:10.1016/j.survophthal.2018.03.003
  • Truffer F, Geiser M, Chappelet MA, et al. Absolute retinal blood flowmeter using a laser Doppler velocimeter combined with adaptive optics. J Biomed Opt. 2020;25(11):115002. doi:10.1117/1.JBO.25.11.115002
  • Mursch-Edlmayr AS, Bolz M, Strohmaier C. Vascular aspects in glaucoma: from pathogenesis to therapeutic approaches. Int J Mol Sci. 2021;22(9):4662. doi:10.3390/ijms22094662
  • Morita N, Nogami H, Higurashi E, Sawada R. Grasping force control for a robotic hand by slip detection using developed micro laser Doppler velocimeter. Sensors. 2018;18(2):326. doi:10.3390/s18020326
  • Ishida H, Fujino H, Iwamoto S, Hachiga T, Nakagawa N. Measurement of swirling flow in a blood chamber by laser Doppler imaging system. Meas Sci Technol. 2020;31(9):095702. doi:10.1088/1361-6501/ab8970
  • Mujat M, Lu Y, Ferguson D, Iftimia N. Calibration of laser Doppler flowmetry. Invest Ophthalmol Vis Sci. 2020;61(7):2540.
  • Puyo L, Paques M, Fink M, Sahel JA, Atlan M. Analysis of retinal and choroidal images measured by laser Doppler holography. In: Optical Methods for Inspection, Characterization, and Imaging of Biomaterials IV. SPIE; 2019:85–89.
  • Puyo L, Paques M, Fink M, Sahel JA, Atlan M. Choroidal vasculature imaging with laser Doppler holography. Biomed Opt Express. 2019;10(2):995–1012. doi:10.1364/BOE.10.000995
  • Pijewska E, Sylwestrzak M, Gorczynska I, Tamborski S, Pawlak MA, Szkulmowski M. Blood flow rate estimation in optic disc capillaries and vessels using Doppler optical coherence tomography with 3D fast phase unwrapping. Biomed Opt Express. 2020;11(3):1336–1353. doi:10.1364/BOE.382155
  • Braaf B, Gräfe MG, Uribe-Patarroyo N, et al. OCT-based velocimetry for blood flow quantification. High Res Imag Microsc Ophthalmol. 2019;2019:161–179.
  • Garhöfer G, Bata AM, Popa-Cherecheanu A, et al. Retinal oxygen extraction in patients with primary open-angle glaucoma. Int J Mol Sci. 2022;23(17):10152. doi:10.3390/ijms231710152
  • Hou W, Feng J, Chen J, Li X, Yang G, Sun X. Analysis of the optic nerve head microcirculation using optical coherence tomography angiography and the upstream macrocirculation using color Doppler imaging in low-tension and high-tension glaucoma patients. Ophthalmic Res. 2023;66(1):567–577. doi:10.1159/000528521
  • Mantella LE, Liblik K, Johri AM. Vascular imaging of atherosclerosis: strengths and weaknesses. Atherosclerosis. 2021;319:42–50. doi:10.1016/j.atherosclerosis.2020.12.021
  • Ong HS, Tey KY, Ke M, et al. A pilot study investigating anterior segment optical coherence tomography angiography as a non-invasive tool in evaluating corneal vascularisation. Sci Rep. 2021;11(1):1212. doi:10.1038/s41598-020-80099-2
  • Yang XX. Research progress in the application of OCTA technology in primary glaucoma. Inter Eye Sci. 2021;2021:57–61.
  • Balyen L, Kaya M, Arıkan G, Ü G. Optical coherence tomography angiography for glaucoma diagnosis and observation; 2020.
  • Zegadło A, Wierzbowska J. Colour Doppler imaging of retrobulbar circulation in different severity of glaucoma optic neuropathy. Med Ultrason. 2021;23(4):410–417. doi:10.11152/mu-2954
  • Calzetti G, Mursch‐Edlmayr AS, Bata AM, et al. Measuring optic nerve head perfusion to monitor glaucoma: a study on structure–function relationships using laser speckle flowgraphy. Acta Ophthalmol. 2022;100(1):e181–91. doi:10.1111/aos.14862
  • Chen VY, Le CT, Pottenburgh J, et al. A pilot study assessing retinal blood flow dysregulation in glaucoma using erythrocyte mediated velocimetry. Transl Vis Sci Technol. 2022;11(11):19. doi:10.1167/tvst.11.11.19
  • Rolle T, Dallorto L, Tavassoli M, Nuzzi R. Diagnostic ability and discriminant values of OCTangiography parameters in early glaucoma diagnosis. Ophthalmic Res. 2019;61(3):143–152. doi:10.1159/000489457
  • Shughoury A, Mathew S, Arciero J, et al. Retinal oximetry in glaucoma: investigations and findings reviewed. Acta Ophthalmol. 2020;98(6):559–571. doi:10.1111/aos.14397
  • Kuerten D, Kotliar K, Fuest M, Walter P, Hollstein M, Plange N. Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study. Int Ophthalmol. 2021;41(9):3109–3119. doi:10.1007/s10792-021-01876-0
  • Abe T, Yoshioka T, Song Y, et al. Glaucoma diagnostic performance of retinal blood flow measurement with Doppler optical coherence tomography. Transl Vis Sci Technol. 2022;11(10):11. doi:10.1167/tvst.11.10.11
  • Bekkers A, Borren N, Ederveen V, et al. Microvascular damage assessed by optical coherence tomography angiography for glaucoma diagnosis: a systematic review of the most discriminative regions. Acta Ophthalmol. 2020;98(6):537–558. doi:10.1111/aos.14392
  • Hou TY, Kuang TM, Ko YC, Chang YF, Liu CJ, Chen MJ. Optic disc and macular vessel densities were measured using optical coherence tomography angiography in open-angle glaucoma and angle-closure glaucoma. Sci Rep. 2020;10(1):5608. doi:10.1038/s41598-020-62633-4
  • Stoskuviene A. OCT-angiography appliance in glaucoma. Bioph Propert Glaucoma. 2019;2019:89–99.
  • Burn JB, Huang AS, Weber A, Komáromy AM, Pirie CG. Aqueous angiography in pre‐glaucomatous and glaucomatous ADAMTS10‐mutant canine eyes: a pilot study. Vet Ophthalmol. 2022;25:72–83. doi:10.1111/vop.12938
  • Ho CH, Wong JK. Role of 24-hour intraocular pressure monitoring in glaucoma management. J Ophthalmol. 2019;2019. doi:10.1155/2019/3632197
  • McGrath OE, Aslam TM. Use of imaging technology to assess the effect of COVID-19 on retinal tissues: a systematic review. Ophthalmol Therap. 2022;11(3):1017–1030. doi:10.1007/s40123-022-00509-8