114
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Blue Light Filtration in Intraocular Lenses: Effects on Visual Function and Systemic Health

ORCID Icon &
Pages 1575-1586 | Received 17 Nov 2023, Accepted 02 May 2024, Published online: 30 May 2024

References

  • Di Carlo E, Augustin AJ. Prevention of the onset of age-related macular degeneration. J Clin Med. 2021;10(15):3297. doi:10.3390/jcm10153297
  • Algvere PV, Marshall J, Seregard S. Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol Scand. 2006;84(1):4–15. doi:10.1111/j.1600-0420.2005.00627.x
  • Kessel L, Lundeman JH, Herbst K, Andersen TV, Larsen M. Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment. J Cataract Refract Surg. 2010;36(2):308–312. doi:10.1016/j.jcrs.2009.08.035
  • Hammond BR, Sreenivasan V, Suryakumar R. The effects of blue light-filtering intraocular lenses on the protection and function of the visual system. Clin Ophthalmol. 2019;13:2427–2438. doi:10.2147/OPTH.S213280
  • Werner JS. Development of scotopic sensitivity and the absorption spectrum of the human ocular media. J Opt Soc Am. 1982;72(2):247–258. doi:10.1364/JOSA.72.000247
  • Hartzer MK, Akinay A, Ong M, et al. Light transmission characteristics of the human lens as a function of age. Invest Ophthalmol Vis Sci. 2008;49(13):3789.
  • Kohnen T, Baumeister M, Kook D, Klaproth OK, Ohrloff C. Cataract surgery with implantation of an artificial lens. Dtsch Arztebl Int. 2009;106(43):695–702. doi:10.3238/arztebl.2009.0695
  • Downie LE, Busija L, Keller PR. Blue-light filtering intraocular lenses (IOLs) for protecting macular health. Cochrane Database Syst Rev. 2018;5:CD011977.
  • Tzamalis A, Kynigopoulos M, Pallas G, Tsinopoulos I, Ziakas N. Influence of intraocular lens asphericity and blue light filtering on visual outcome, contrast sensitivity, and aberrometry after uneventful cataract extraction. J Ophthalmic Vis Res. 2020;15(3):308–317. doi:10.18502/jovr.v15i3.7449
  • Popov I, Jurenova D, Valaskova J, et al. Effect of blue light filtering intraocular lenses on visual perception. Medicina. 2021;57(6):559. doi:10.3390/medicina57060559
  • Mester U, Holz F, Kohnen T, Lohmann C, Tetz M. Intraindividual comparison of a blue-light filter on visual function: AF-1 (UY) versus AF-1 (UV) intraocular lens. J Cataract Refract Surg. 2008;34(4):608–615. doi:10.1016/j.jcrs.2007.11.049
  • Kara-Junior N, Espindola RF, Gomes BA, et al. Effects of blue light-filtering intraocular lenses on the macula, contrast sensitivity, and color vision after a long-term follow-up. J Cataract Refract Surg. 2011;37(12):2115–2119. doi:10.1016/j.jcrs.2011.06.024
  • Cionni RJ, Tsai JH. Color perception with AcrySof natural and AcrySof single-piece intraocular lenses under photopic and mesopic conditions. J Cataract Refract Surg. 2006;32(2):236–242. doi:10.1016/j.jcrs.2005.12.129
  • Khokhar SK, Jindal A, Agarwal T, Panda A. Comparison of color perception after tinted blue light-filtering and clear ultraviolet-filtering intraocular lens implantation. J Cataract Refract Surg. 2011;37(9):1598–1604. doi:10.1016/j.jcrs.2011.03.044
  • Hayashi K, Hayashi H. Visual function in patients with yellow tinted intraocular lenses compared with vision in patients with non-tinted intraocular lenses. Br J Ophthalmol. 2006;90(8):1019–1023. doi:10.1136/bjo.2006.090712
  • Zhu XF, Zou HD, Yu YF, Sun Q, Zhao NQ. Comparison of blue light-filtering IOLs and UV light-filtering IOLs for cataract surgery: a meta-analysis. PLoS One. 2012;7(3): e33013.
  • Cao D. Chapter 10 - Color vision and night vision. Ryan SJ, editor. Ryan’s Retina. Vol. 1. 5th ed. Elsevier Inc.; 2012:285–299.
  • Hammond BR, Wooten BR, Saint SE, Renzi-Hammond L. The effects of a blue-light filtering versus clear intraocular implant on color appearance. Transl Vis Sci Technol. 2021;10(12):25. doi:10.1167/tvst.10.12.25
  • Downes SM. Ultraviolet or blue-filtering intraocular lenses: what is the evidence? Eye. 2016;30(2):215–221. doi:10.1038/eye.2015.267
  • Schmack I, Schimpf M, Stolzenberg A, et al. Visual quality assessment in patients with orange-tinted blue light-filtering and clear ultraviolet light-filtering intraocular lenses. J Cataract Refract Surg. 2012;38(5):823–832. doi:10.1016/j.jcrs.2011.12.028
  • Nakano S, Miyata A, Kizawa J, et al. Blue light-filtering and violet light-filtering hydrophobic acrylic foldable intraocular lenses: intraindividual comparison. J Cataract Refract Surg. 2019;45(10):1393–1397. doi:10.1016/j.jcrs.2019.05.027
  • Delahunt PB, Webster MA, Ma L, Werner JS. Long-term renormalization of chromatic mechanisms following cataract surgery. Vis Neurosci. 2004;21(3):301–307. doi:10.1017/S0952523804213025
  • Hammond BR, Buch J, Renzi-Hammond LM, Bosten JM, Nankivil D. The effect of a short-wave filtering contact lens on color appearance. J Vis. 2023;23(1):2. doi:10.1167/jov.23.1.2
  • Hammond BR, Fletcher LM, Elliott JG. Glare disability, photostress recovery, and chromatic contrast: relation to macular pigment and serum lutein and zeaxanthin. Invest Ophthalmol Vis Sci. 2013;54(1):476–481. doi:10.1167/iovs.12-10411
  • Bhalla JS, Gupta S. Dysphotopsia - unraveling the enigma. Delhi J Ophthalmol. 2016;27(2):97–101. doi:10.7869/djo.217
  • Hammond BR. Attenuating photostress and glare disability in pseudophakic patients through the addition of a short-wave absorbing filter. J Ophthalmol. 2015;2015:607635. doi:10.1155/2015/607635
  • Hammond BR, Renzi LM, Sachak S, Brint SF. Contralateral comparison of blue-filtering and non–blue-filtering intraocular lenses: glare disability, heterochromatic contrast, and photostress recovery. Clin Ophthalmol. 2010;4:1465–1473. doi:10.2147/OPTH.S15102
  • Hammond BR, Bernstein B, Dong J. The effect of the AcrySof natural lens on glare disability and photostress. Am J Ophthalmol. 2009;148(2):272–276.e2. doi:10.1016/j.ajo.2009.03.014
  • Gray R, Hill W, Neuman B, Houtman D, Potvin R. Effects of a blue light-filtering intraocular lens on driving safety in glare conditions. J Cataract Refract Surg. 2012;38(5):816–822. doi:10.1016/j.jcrs.2011.11.047
  • Renzi-Hammond LM, Hammond BR. Blue-light filtering intraocular implants and darker irises reduce the behavioral effects of higher-order ocular aberrations. Curr Eye Res. 2022;47(5):753–758. doi:10.1080/02713683.2022.2025844
  • Hammond BR. The visual effects of intraocular colored filters. Scientifica. 2012;2012:424965. doi:10.6064/2012/424965
  • Kanclerz P, Hecht I, Cunha M, et al. Association of blue light-filtering intraocular lenses with all-cause and traffic accident-related injuries among patients undergoing bilateral cataract surgery in Finland. JAMA Network Open. 2022;5(8):e2227232. doi:10.1001/jamanetworkopen.2022.27232
  • Gray R, Perkins SA, Suryakumar R, Neuman B, Maxwell WA. Reduced effect of glare disability on driving performance in patients with blue light-filtering intraocular lenses. J Cataract Refract Surg. 2011;37(1):38–44. doi:10.1016/j.jcrs.2010.07.034
  • Werner JS. Night vision in the elderly: consequences for seeing through a “blue filtering” intraocular lens. Br J Ophthalmol. 2005;89(11):1518–1521. doi:10.1136/bjo.2005.073734
  • Hammond BR, Buch J. Individual differences in visual function. Exp Eye Res. 2020;199:108186. doi:10.1016/j.exer.2020.108186
  • Walls GL, Judd HD. The intra-ocular colour-filters of vertebrates. Br J Ophthalmol. 1933;17(11):641–675. doi:10.1136/bjo.17.11.641
  • Wooten BR, Hammond BR. Macular pigment: influences on visual acuity and visibility. Prog Retin Eye Res. 2002;21(2):225–240. doi:10.1016/S1350-9462(02)00003-4
  • Hammond BR, Wooten BR, Engles M, Wong JC. The influence of filtering by the macular carotenoids on contrast sensitivity measured under simulated blue haze conditions. Vision Res. 2012;63:58–62. doi:10.1016/j.visres.2012.04.019
  • Fletcher LM, Engles M, Hammond BR. Visibility through atmospheric haze and its relation to macular pigment. Optom Vis Sci. 2014;91(9):1089–1096. doi:10.1097/OPX.0000000000000355
  • Lawler T, Liu Z, Nalbandyan M, et al. Lutein and zeaxanthin supplement use is associated with increased macular pigment density over 15 years and greater contrast sensitivity in the Carotenoids in Age-Related Eye Disease Study of older-adult women. Invest Ophthalmol Vis Sci. 2021;62(8):2950.
  • Nolan JM, Power R, Stringham J, et al. Enrichment of macular pigment enhances contrast sensitivity in subjects free of retinal disease: Central Retinal Enrichment Supplementation trials - report 1. Invest Ophthalmol Vis Sci. 2016;57(7):3429–3439. doi:10.1167/iovs.16-19520
  • Wolf-Schnurrbusch UE, Zinkernagel MS, Munk MR, Ebneter A, Wolf S. Oral lutein supplementation enhances macular pigment density and contrast sensitivity but not in combination with polyunsaturated fatty acids. Invest Ophthalmol Vis Sci. 2015;56(13):8069–8074. doi:10.1167/iovs.15-17586
  • Sasamoto Y, Gomi F, Sawa M, Tsujikawa M, Nishida K. Effect of 1-year lutein supplementation on macular pigment optical density and visual function. Graefes Arch Clin Exp Ophthalmol. 2011;249(12):1847–1854. doi:10.1007/s00417-011-1780-z
  • Loughman J, Nolan JM, Howard AN, et al. The impact of macular pigment augmentation on visual performance using different carotenoid formulations. Invest Ophthalmol Vis Sci. 2012;53(12):7871–7880. doi:10.1167/iovs.12-10690
  • Machida N, Kosehira M, Kitaichi N. Clinical effects of dietary supplementation of lutein with high bio-accessibility on macular pigment optical density and contrast sensitivity: a randomized double-blind placebo-controlled parallel-group comparison trial. Nutrients. 2020;12(10):2966. doi:10.3390/nu12102966
  • Chakravarthy U, Wong TY, Fletcher A, et al. Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis. BMC Ophthalmol. 2010;10:31. doi:10.1186/1471-2415-10-31
  • Al-Zamil WM, Yassin SA. Recent developments in age-related macular degeneration: a review. Clin Interv Aging. 2017;12:1313–1330. doi:10.2147/CIA.S143508
  • Klein BE, Howard KP, Iyengar SK, et al. Sunlight exposure, pigmentation, and incident age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014;55(9):5855–5861. doi:10.1167/iovs.14-14602
  • Schick T, Ersoy L, Lechanteur YT, et al. History of sunlight exposure is a risk factor for age-related macular degeneration. Retina. 2016;36(4):787–790. doi:10.1097/IAE.0000000000000756
  • Ham WT, Ruffolo JJ, Mueller HA, Clarke AM, Moon ME. Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Invest Ophthalmol Vis Sci. 1978;17(10):1029–1035.
  • Wang L, Yu X, Zhang D, et al. Long-term blue light exposure impairs mitochondrial dynamics in the retina in light-induced retinal degeneration in vivo and in vitro. J Photochem Photobiol B. 2023;240:112654. doi:10.1016/j.jphotobiol.2023.112654
  • Li X, Zhu S, Qi F. Blue light pollution causes retinal damage and degeneration by inducing ferroptosis. J Photochem Photobiol B. 2023;238:112617. doi:10.1016/j.jphotobiol.2022.112617
  • Mainster MA, Findl O, Dick HB, et al. The blue light hazard versus blue light hype. Am J Ophthalmol. 2022;240:51–57. doi:10.1016/j.ajo.2022.02.016
  • Hammond BR, Renzi-Hammond L. Comment on: the blue light hazard versus blue light hype. Am J Ophthalmol. 2022;241:282–283. doi:10.1016/j.ajo.2022.03.032
  • Chen P, Lai Z, Wu Y, et al. Retinal neuron is more sensitive to blue light-induced damage than glia cell due to DNA double-strand breaks. Cells. 2019;8(1):68. doi:10.3390/cells8010068
  • Ratnayake K, Payton JL, Meger ME, et al. Blue light-triggered photochemistry and cytotoxicity of retinal. Cell Signal. 2020;69:109547. doi:10.1016/j.cellsig.2020.109547
  • Contín MA, Benedetto MM, Quinteros-Quintana ML, Guido ME. Light pollution: the possible consequences of excessive illumination on retina. Eye. 2016;30(2):255–263. doi:10.1038/eye.2015.221
  • Wu J, Seregard S, Algvere PV. Photochemical damage of the retina. Surv Ophthalmol. 2006;51(5):461–481. doi:10.1016/j.survophthal.2006.06.009
  • Forest DL, Johnson LV, Clegg DO. Cellular models and therapies for age-related macular degeneration. Dis Model Mech. 2015;8(5):421–427. doi:10.1242/dmm.017236
  • Vila N, Siblini A, Esposito E, et al. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model. BMC Ophthalmol. 2017;17(1):198. doi:10.1186/s12886-017-0592-2
  • Abdouh M, Lu M, Chen Y, et al. Filtering blue light mitigates the deleterious effects induced by the oxidative stress in human retinal pigment epithelial cells. Exp Eye Res. 2022;217:108978. doi:10.1016/j.exer.2022.108978
  • Yu WY, Shan SSW, Lakshmanan Y, et al. Selective blue-filtering spectacle lens protected primary porcine RPE cells against light emitting diode-induced cell damage. PLoS One. 2022;17(5):e0268796. doi:10.1371/journal.pone.0268796
  • Fernandez-Vega Cueto A, Del Olmo-Aguado S, Garcia-Perez E, et al. Protector role of intraocular lenses under artificial light conditions. Ophthalmic Res. 2022;65(3):276–286. doi:10.1159/000521306
  • Di Cesare S, Maloney S, Fernandes BF, et al. The effect of blue light exposure in an ocular melanoma animal model. J Exp Clin Cancer Res. 2009;28(1):48. doi:10.1186/1756-9966-28-48
  • Marshall JC, Gordon KD, McCauley CS, de Souza Filho JP, Burnier MN. The effect of blue light exposure and use of intraocular lenses on human uveal melanoma cell lines. Melanoma Res. 2006;16(6):537–541. doi:10.1097/CMR.0b013e3280112b86
  • Logan P, Bernabeu M, Ferreira A, Burnier MN. Evidence for the role of blue light in the development of uveal melanoma. J Ophthalmol. 2015;2015:386986. doi:10.1155/2015/386986
  • Achiron A, Elbaz U, Hecht I, et al. The effect of blue-light filtering intraocular lenses on the development and progression of neovascular age-related macular degeneration. Ophthalmology. 2021;128(3):410–416. doi:10.1016/j.ophtha.2020.07.039
  • Hamel T, Rheault J, Simonyan D, Bourgault S, Rochette PJ. The influence of blue-filtering intraocular lenses implant on exudative age-related macular degeneration: a case-control study. Clin Ophthalmol. 2021;15:2287–2292. doi:10.2147/OPTH.S300461
  • Lee JS, Li PR, Hou CH, et al. Effect of blue light-filtering intraocular lenses on age-related macular degeneration: a nationwide cohort study with 10-year follow-up. Am J Ophthalmol. 2022;234:138–146. doi:10.1016/j.ajo.2021.08.002
  • Pipis A, Touliou E, Pillunat LE, Augustin AJ. Effect of the blue filter intraocular lens on the progression of geographic atrophy. Eur J Ophthalmol. 2015;25(2):128–133. doi:10.5301/ejo.5000520
  • Nagai H, Hirano Y, Yasukawa T, et al. Prevention of increased abnormal fundus autofluorescence with blue light-filtering intraocular lenses. J Cataract Refract Surg. 2015;41(9):1855–1859. doi:10.1016/j.jcrs.2015.01.017
  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–1911. doi:10.1001/jama.2014.3192
  • Hecht I, Kanclerz P, Achiron A, Elbaz U, Tuuminen R. The effect of blue-light filtering intraocular lenses on the development and progression of glaucoma. J Glaucoma. 2023;32(6):451–457. doi:10.1097/IJG.0000000000002220
  • Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405–6412. doi:10.1523/JNEUROSCI.21-16-06405.2001
  • Turner PL, Mainster MA. Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol. 2008;92(11):1439–1444. doi:10.1136/bjo.2008.141747
  • Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br J Ophthalmol. 2006;90(6):784–792. doi:10.1136/bjo.2005.086553
  • Landers JA, Tamblyn D, Perriam D. Effect of a blue-light-blocking intraocular lens on the quality of sleep. J Cataract Refract Surg. 2009;35(1):83–88. doi:10.1016/j.jcrs.2008.10.015
  • Zambrowski O, Tavernier E, Souied EH, et al. Sleep and mood changes in advanced age after blue-blocking (yellow) intra ocular lens (IOLs) implantation during cataract surgical treatment: a randomized controlled trial. Aging Mental Health. 2018;22(10):1351–1356. doi:10.1080/13607863.2017.1348482
  • Brondsted AE, Sander B, Haargaard B, et al. The effect of cataract surgery on circadian photoentrainment: a randomized trial of blue-blocking versus neutral intraocular lenses. Ophthalmology. 2015;122(10):2115–2124. doi:10.1016/j.ophtha.2015.06.033
  • Brondsted AE, Haargaard B, Sander B, et al. The effect of blue-blocking and neutral intraocular lenses on circadian photoentrainment and sleep one year after cataract surgery. Acta Ophthalmol. 2017;95(4):344–351. doi:10.1111/aos.13323
  • See LC, Li PR, Lin KK, Hou CH, Lee JS. Effect of blue light-filtering intraocular lenses on insomnia after cataract surgery: a nationwide cohort study with 10-year follow-up. Am J Ophthalmol. 2022;239:26–36. doi:10.1016/j.ajo.2022.01.012
  • Feng X, Xu K, Hao Y, Qi H. Impact of blue-light filtering intraocular lens implantation on the quality of sleep in patients after cataract surgery. Medicine. 2016;95(51):e5648. doi:10.1097/MD.0000000000005648
  • Lee TM, Loh EW, Kuo TC, et al. Effects of ultraviolet and blue-light filtering on sleep: a meta-analysis of controlled trials and studies on cataract patients. Eye. 2021;35(6):1629–1636. doi:10.1038/s41433-020-01132-2
  • Wahl S, Engelhardt M, Schaupp P, Lappe C, Ivanov IV. The inner clock-blue light sets the human rhythm. J Biophotonics. 2019;12(12):e201900102. doi:10.1002/jbio.201900102
  • Hammond BR, vanDellen M. The effects of intraocular lens implant type on mood: a response to Zambrowski et al. Aging Mental Health. 2019;23(2):171–172. doi:10.1080/13607863.2017.1399351
  • Cho Y, Ryu SH, Lee BR, et al. Effects of artificial light at night on human health: a literature review of observational and experimental studies applied to exposure assessment. Chronobiol Int. 2015;32(9):1294–1310. doi:10.3109/07420528.2015.1073158
  • Bennett S, Alpert M, Kubulins V, Hansler RL. Use of modified spectacles and light bulbs to block blue light at night may prevent postpartum depression. Med Hypotheses. 2009;73(2):251–253. doi:10.1016/j.mehy.2009.01.049
  • Choi K, Shin C, Kim T, Chung HJ, Suk HJ. Awakening effects of blue-enriched morning light exposure on university students’ physiological and subjective responses. Sci Rep. 2019;9(1):345. doi:10.1038/s41598-018-36791-5
  • Jniene A, Errguig L, El Hangouche AJ, et al. Perception of sleep disturbances due to bedtime use of blue light-emitting devices and its impact on habits and sleep quality among young medical students. BioMed Res Int. 2019;2019:7012350. doi:10.1155/2019/7012350
  • Lee CS, Gibbons LE, Lee AY, et al. Association between cataract extraction and development of dementia. JAMA Intern Med. 2022;182(2):134–141. doi:10.1001/jamainternmed.2021.6990
  • Lad M, Sedley W, Griffiths TD. Sensory loss and risk of dementia. Neuroscientist. 2022;30(2):247–259. doi:10.1177/10738584221126090
  • Steinemann A, Bromundt V, Chellappa SL, et al. Evaluation of visual comfort and mental effort under different light conditions for ultraviolet-absorbing and additional blue-filtering intraocular lenses for cataract surgery. Klin Monbl Augenheilkd. 2019;236(4):398–404. doi:10.1055/a-0810-0302
  • Lu Y, Qi H. Evaluate the protective effect of antioxidants on retinal pigment cell hazard induced by blue light: a mini-review. Food Rev Int. 2022. doi:10.1080/87559129.87552022.82098317
  • Marie M, Bigot K, Angebault C, et al. Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death Dis. 2018;9(3):287. doi:10.1038/s41419-018-0331-5
  • Arunkumar R, Calvo CM, Conrady CD, Bernstein PS. What do we know about the macular pigment in AMD: the past, the present, and the future. Eye. 2018;32(5):992–1004. doi:10.1038/s41433-018-0044-0
  • Stringham JM, Hammond BR, Wooten BR, Snodderly DM. Compensation for light loss resulting from filtering by macular pigment: relation to the S-cone pathway. Optom Vis Sci. 2006;83(12):887–894. doi:10.1097/01.opx.0000249976.00534.2d
  • Johnson EJ, Avendano EE, Mohn ES, Raman G. The association between macular pigment optical density and visual function outcomes: a systematic review and meta-analysis. Eye. 2021;35(6):1620–1628. doi:10.1038/s41433-020-01124-2
  • Hammond B. The dietary carotenoids lutein and zeaxanthin in pre-and-postnatal development. Funct Food Rev. 2012;4(3):130–137.
  • Beluska-Turkan K, Korczak R, Hartell B, et al. Nutritional gaps and supplementation in the first 1000 days. Nutrients. 2019;11(12):2891. doi:10.3390/nu11122891
  • Zimmer JP, Hammond BR. Possible influences of lutein and zeaxanthin on the developing retina. Clin Ophthalmol. 2007;1(1):25–35.