178
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Evaluation of Methods for Detection and Semantic Segmentation of the Anterior Capsulotomy in Cataract Surgery Video

, ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 647-657 | Received 15 Dec 2023, Accepted 20 Feb 2024, Published online: 05 Mar 2024

References

  • Masket S. Postoperative complications of capsulorhexis. J Cataract Refract Surg. 1993;19(6):721–724. doi:10.1016/S0886-3350(13)80340-9
  • Gimbel HV, Neuhann T. Development, advantages, and methods of the continuous circular capsulorhexis technique. J Cataract Refract Surg. 1990;16(1):31–37. doi:10.1016/S0886-3350(13)80870-X
  • Abell RG, Davies PE, Phelan D, Goemann K, McPherson ZE, Vote BJ. Anterior capsulotomy integrity after femtosecond laser-assisted cataract surgery. Ophthalmology. 2014;121(1):17–24. doi:10.1016/j.ophtha.2013.08.013
  • Narnaware SH, Bawankule PK. Anterior capsular phimosis. Indian J Ophthalmol. 2019;67(9):1476. doi:10.4103/ijo.IJO_392_19
  • Naik M, Sethi H, Mehta A. Capsular bag phimosis. Am J Ophthalmol Case Rep. 2020;20:100999. doi:10.1016/j.ajoc.2020.100999
  • Wong WK, Ing MR, Ling CJM. Complete anterior capsule phimosis following cataract surgery in a patient with a history of retinopathy of prematurity, nystagmus, and a narrow angle. Case Rep Ophthalmol. 2019;10(2):274–280. doi:10.1159/000502282
  • Mohr AM, Eckardt C. Diathermy capsulotomy to remove fibrotic anterior capsules in pseudophakic eyes. J Cataract Refract Surg. 1997;23(2):244–247. doi:10.1016/S0886-3350(97)80348-3
  • Kránitz K, Miháltz K, Sándor GL, Takacs A, Knorz MC, Nagy ZZ. Intraocular lens tilt and decentration measured by Scheimpflug camera following manual or femtosecond laser–created continuous circular capsulotomy. J Refract Surg. 2012;28(4):259–263. doi:10.3928/1081597X-20120309-01
  • Karahan E, Tuncer I, Zengin MO. The effect of ND: YAG laser posterior capsulotomy size on refraction, intraocular pressure, and macular thickness. J Ophthalmol. 2014;2014:846385. doi:10.1155/2014/846385
  • Sun R. Advantage and disadvantage of posterior continuous curvilinear capsulorhexis. J Cataract Refract Surg. 2007;33(12):2004–2005. doi:10.1016/j.jcrs.2007.10.001
  • Pissas T, Ravasio C, Cruz LD, Bergeles C. Effective semantic segmentation in Cataract Surgery: what matters most? Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 24th International Conference; 2021.
  • Mahmoud O, Zhang H, Matton N, Mian SI, Tannen B, Nallasamy N. CatStep: automated cataract surgical phase classification and boundary segmentation leveraging inflated 3D-convolutional neural network architecture and BigCat. Ophthalmol Sci. 2024;4(1):100405. doi:10.1016/j.xops.2023.100405
  • Pham DL, Xu C, Prince JL. A survey of current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2(3):315–337. doi:10.1146/annurev.bioeng.2.1.315
  • Matton N, Qalieh A, Zhang Y, et al. Analysis of cataract surgery instrument identification performance of convolutional and recurrent neural network ensembles leveraging BigCat. Transl Vis Sci Tech. 2022;11(4):1. doi:10.1167/tvst.11.4.1
  • Giap BD, Srinivasan K, Mahmoud O, Mian SI, Tannen BL, Nallasamy N. Adaptive tensor-based feature extraction for pupil segmentation in cataract Surgery. IEEE Journal of Biomedical and Health Informatics; 2023.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2014.
  • He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016.
  • Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017.
  • Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017:936–944.
  • Chaurasia A, Culurciello E. LinkNet: exploiting encoder representations for efficient semantic segmentation. IEEE Visual Communications and Image Processing; 2017:1–4.
  • Ronneberger O, Fischer P, Brox R. U-Net: convolutional networks for biomedical image segmentation. Proc International Conference on Medical Image Computing and Computer-Assisted Intervention; 2015:234–241.
  • Sun K, Xiao B, Liu D, Wang J. Deep High-resolution representation learning for human pose estimation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Long Beach, CA, USA; 2019:5686–5696.
  • Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. European Conference on Computer Vision; 2018.
  • Giap BD, Srinivasan K, Mahmoud O, Mian SI, Tannen BL, Nallasamy N. Tensor-based feature extraction for pupil recognition in cataract surgery. Proc. the 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2023.
  • Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. Proc IEEE Conf Comput Vis Pattern Recognit; 2009:248–255.