178
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Current Concepts and Recent Updates of Optical Biometry- A Comprehensive Review

, ORCID Icon, , & ORCID Icon
Pages 1191-1206 | Received 17 Feb 2024, Accepted 28 Apr 2024, Published online: 03 May 2024

References

  • Astbury N, Ramamurthy B. How to avoid mistakes in biometry. Community Eye Health. 2006;19(60):70–71.
  • Wang B, Naidu RK, Qu X. Factors related to axial length elongation and myopia progression in orthokeratology practice. PLoS One. 2017;12(4):e0175913.
  • Kanclerz P, Khoramnia R, Wang X. Current developments in corneal topography and tomography. Diagnostics. 2021;11(8):1466. doi:10.3390/diagnostics11081466
  • Motlagh MN, Moshirfar M, Murri MS, et al. Pentacam® corneal tomography for screening of refractive surgery candidates: a review of the literature, part I. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):177–203.
  • Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–e1234. doi:10.1016/S2214-109X(17)30393-5
  • Findl O, Drexler W, Menapace R, Heinzl H, Hitzenberger CK, Fercher AF. Improved prediction of intraocular lens power using partial coherence interferometry. J Cataract Refract Surg. 2001;27(6):861–867. doi:10.1016/S0886-3350(00)00699-4
  • Kolega MŠ, Kovačević S, Čanović S, Pavičić AD, Bašić JK. Comparison of IOL--master and ultrasound biometry in preoperative intra ocular lens (IOL) power calculation. Coll Antropol. 2015;39(1):233–235.
  • Kunert KS, Peter M, Blum M, et al. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg. 2016;42(1):76–83. doi:10.1016/j.jcrs.2015.07.039
  • Olsen T. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 1992;18(2):125–129. doi:10.1016/S0886-3350(13)80917-0
  • Holladay JT. Ultrasound and optical biometry. Cata Refra Surg Global Eur. 2009;4::18‑19.
  • Németh J, Fekete O, Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J Cataract Refract Surg. 2003;29(1):85–88. doi:10.1016/S0886-3350(02)01500-6
  • Findl O. Biometry and intraocular lens power calculation. Curr Opin Ophthalmol. 2005;16(1):61–64. doi:10.1097/00055735-200502000-00011
  • Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13(3):186–188. doi:10.1364/OL.13.000186
  • Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. J Cataract Refract Surg. 2001;27(12):1961–1968. doi:10.1016/s0886-3350(01)01214-7
  • Hoffer KJ, Shammas HJ, Savini G. Comparison of 2 laser instruments for measuring axial length [published correction appears in J cataract refract surg. 2010 6):1066]. J Cataract Refract Surg. 2010;36(4):644–648. doi:10.1016/j.jcrs.2009.11.007
  • Mandal P, Berrow EJ, Naroo SA, et al. Validity and repeatability of the aladdin ocular biometer [published correction appears in br j ophthalmol. 2015 dec; 99(12):1746]. Br J Ophthalmol. 2014;98(2):256–258. doi:10.1136/bjophthalmol-2013-304002
  • Huang J, Savini G, Li J, et al. Evaluation of a new optical biometry device for measurements of ocular components and its comparison with IOLMaster. Br J Ophthalmol. 2014;98(9):1277–1281. doi:10.1136/bjophthalmol-2014-305150
  • Srivannaboon S, Chirapapaisan C, Chonpimai P, Koodkaew S. Comparison of ocular biometry and intraocular lens power using a new biometer and a standard biometer. J Cataract Refract Surg. 2014;40(5):709–715. doi:10.1016/j.jcrs.2013.09.020
  • Ventura BV, Ventura MC, Wang L, Koch DD, Weikert MP. Comparison of biometry and intraocular lens power calculation performed by a new optical biometry device and a reference biometer. J Cataract Refract Surg. 2017;43(1):74–79. doi:10.1016/j.jcrs.2016.11.033
  • Jung S, Chin HS, Kim NR, Lee KW, Jung JW. Comparison of repeatability and agreement between swept-source optical biometry and dual-scheimpflug topography. J Ophtha. 2017;2017:1516395. doi:10.1155/2017/1516395
  • Huang J, Savini G, Hoffer KJ, et al. Repeatability and interobserver reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOLMaster. Br J Ophthalmol. 2017;101(4):493–498. doi:10.1136/bjophthalmol-2016-308352
  • Goebels S, Pattmöller M, Eppig T, Cayless A, Seitz B, Langenbucher A. Comparison of 3 biometry devices in cataract patients. J Cataract Refract Surg. 2015;41(11):2387–2393. doi:10.1016/j.jcrs.2015.05.028
  • Jiang J, Pan X, Zhou M, Wang X, Zhu H, Li D. A comparison of IOLMaster 500 and IOLMaster 700 in the measurement of ocular biometric parameters in cataract patients. Sci Rep. 2022;12(1):12770. doi:10.1038/s41598-022-16985-8
  • Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to haigis. Graefes Arch Clin Exp Ophthalmol. 2000;238(9):765–773. doi:10.1007/s004170000188
  • Bullimore MA, Buehren T, Bissmann W. Agreement between a partial coherence interferometer and 2 manual keratometers. J Cataract Refract Surg. 2013;39(10):1550–1560. doi:10.1016/j.jcrs.2013.03.034
  • Skrzypecki J, Grabska-Liberek I, Guszkowska M, Izdebska J, Szaflik JP. Immersion biometry for intraocular lens power calculation with fourth-generation formulas. Clin Ophthalmol. 2020;14:2159–2162. doi:10.2147/OPTH.S259078
  • Xia T, Martinez CE, Tsai LM. Update on intraocular lens formulas and calculations. Asia Pac J Ophthalmol. 2020;9(3):186–193. doi:10.1097/APO.0000000000000293
  • Cione F, La Padula G, Formicola A. Axial length correction in evaluation of refractive predictability and biometry agreement [Letter]. Clin Ophthalmol. 2023;17:2357–2358. doi:10.2147/OPTH.S433664
  • Chen YA, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer. J Cataract Refract Surg. 2011;37(3):513–517. doi:10.1016/j.jcrs.2010.10.041
  • Cruysberg LP, Doors M, Verbakel F, Berendschot TT, De Brabander J, Nuijts RM. Evaluation of the lenstar LS 900 non-contact biometer. Br J Ophthalmol. 2010;94(1):106–110. doi:10.1136/bjo.2009.161729
  • McAlinden C, Wang Q, Pesudovs K, et al. Axial length measurement failure rates with the IOLMaster and lenstar ls 900 in eyes with cataract. PLoS One. 2015;10(6):e0128929. doi:10.1371/journal.pone.0128929
  • Cione F, Pellegrino I, Di Paola I. Comment on: efficacy of segmented axial length and artificial intelligence approaches to intraocular lens power calculation in short eyes. J Cataract Refract Surg. 2023;49(11):1187. doi:10.1097/j.jcrs.0000000000001284
  • Hoffer KJ, Savini G. Update on intraocular lens power calculation study protocols: the better way to design and report clinical trials. Ophthalmology. 2021;128(11):e115–e120. doi:10.1016/j.ophtha.2020.07.005
  • Reitblat O, Levy A, Kleinmann G, Assia EI. Accuracy of intraocular lens power calculation using three optical biometry measurement devices: the OA-2000, Lenstar-LS900 and IOLMaster-500. Eye. 2018;32(7):1244–1252. doi:10.1038/s41433-018-0063-x
  • Ha A, Wee WR, Kim MK. Comparative efficacy of the new optical biometer on intraocular lens power calculation (AL-Scan versus IOLMaster). Korean J Ophthalmol. 2018;32(3):241–248. doi:10.3341/kjo.2017.0063
  • Huang J, Savini G, Wu F, et al. Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer. J Cataract Refract Surg. 2015;41(10):2233–2241. doi:10.1016/j.jcrs.2015.10.062
  • Kaswin G, Rousseau A, Mgarrech M, Barreau E, Labetoulle M. Biometry and intraocular lens power calculation results with a new optical biometry device: comparison with the gold standard. J Cataract Refract Surg. 2014;40(4):593–600. doi:10.1016/j.jcrs.2013.09.015
  • Shi Q, Wang GY, Cheng YH, Pei C. Comparison of IOL-master 700 and IOL-master 500 biometers in ocular biological parameters of adolescents. Int J Ophthalmol. 2021;14(7):1013–1017.
  • Guimarães de Souza R, Montes de Oca I, Esquenazi I, Al-Mohtaseb Z, Weikert MP. Updates in biometry. Int Ophthalmol Clin. 2017;57(3):115–124. doi:10.1097/IIO.0000000000000175
  • Akman A, Asena L, Güngör SG. Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. Br J Ophthalmol. 2016;100(9):1201–1205. doi:10.1136/bjophthalmol-2015-307779
  • Lawless M, Jiang JY, Hodge C, Sutton G, Roberts TV, Barrett G. Total keratometry in intraocular lens power calculations in eyes with previous laser refractive surgery. Clin Exp Ophthalmol. 2020;48(6):749–756. doi:10.1111/ceo.13760
  • De Bernardo M, Cione F, Capasso L, Coppola A, Rosa N. A formula to improve the reliability of optical axial length measurement in IOL power calculation. Sci Rep. 2022;12(1):18845.
  • Omoto MK, Torii H, Masui S, Ayaki M, Tsubota K, Negishi K. Ocular biometry and refractive outcomes using two swept-source optical coherence tomography-based biometers with segmental or equivalent refractive indices [published correction appears in sci rep. 10(1):13181]. Sci Rep. 2019;9(1):6557. doi:10.1038/s41598-019-42968-3
  • Nazm N, Chakrabarti A. Update on optical biometry and intraocular lens power calculation. TNOA J Ophtha Sci Res. 2017;55(3):1.
  • Shammas HJ, Ortiz S, Shammas MC, Kim SH, Chong C. Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer. J Cataract Refract Surg. 2016;42(1):50–61. doi:10.1016/j.jcrs.2015.07.042
  • Montés-Micó R. Evaluation of 6 biometers based on different optical technologies. J Cataract Refract Surg. 2022;48(1):16–25. doi:10.1097/j.jcrs.0000000000000690
  • Hoffer KJ, Shammas HJ, Savini G, Huang J. Multicenter study of optical low-coherence interferometry and partial-coherence interferometry optical biometers with patients from the United States and China. J Cataract Refract Surg. 2016;42(1):62–67. doi:10.1016/j.jcrs.2015.07.041
  • Xiong Y, Lin Y, Zhao Z, Wang H, Zhang G. Evaluation and comparison of ocular biometric parameters obtained with Tomey OA-2000 in silicone oil-filled aphakic eyes. BMC Ophthalmol. 2023;23(1):218. doi:10.1186/s12886-023-02962-w
  • Savini G, Hoffer KJ, Shammas HJ, Aramberri J, Huang J, Barboni P. Accuracy of a new swept-source optical coherence tomography biometer for IOL power calculation and comparison to IOLMaster. J Refract Surg. 2017;33(10):690–695. doi:10.3928/1081597X-20170721-05
  • Sikorski BL, Suchon P. OCT biometry (B-OCT): a new method for measuring ocular axial dimensions. J Ophtha. 2019;2019:1–10. doi:10.1155/2019/9192456
  • Wylęgała A, Bolek B, Mazur R, Wylęgała E. Repeatability, reproducibility, and comparison of ocular biometry using a new optical coherence tomography-based system and another device. Sci Rep. 2020;10(1):14440.
  • Wylęgała A, Mazur R, Bolek B, Wylęgała E. Reproducibility, and repeatability of corneal topography measured by revo NX, Galilei g6 and casia 2 in normal eyes. PLoS One. 2020;15(4):e0230589. doi:10.1371/journal.pone.0230589
  • Moshirfar M, Tenney S, McCabe S, Schmid G. Repeatability and reproducibility of the Galilei G6 and its agreement with the pentacam® AXL in optical biometry and corneal tomography. Expert Rev Med Devices. 2022;19(4):375–383. doi:10.1080/17434440.2022.2075725
  • Ladi JS, Shah NA. Comparison of central corneal thickness measurements with the Galilei dual Scheimpflug analyzer and ultrasound pachymetry. Indian J Ophthalmol. 2010;58(5):385–388. doi:10.4103/0301-4738.67045
  • Cione F, De Bernardo M, Gioia M, et al. A no-history multi-formula approach to improve the iol power calculation after laser refractive surgery: preliminary results. J Clin Med. 2023;12(8):2890. doi:10.3390/jcm12082890
  • Moshirfar M, Buckner B, Ronquillo YC, Hofstedt D. Biometry in cataract surgery: a review of the current literature. Curr Opin Ophthalmol. 2019;30(1):9–12. doi:10.1097/ICU.0000000000000536
  • Kapoor M, Venkatesh P, Chawla R, Temkar S, Aggarwal E. Simplifying biometry in oil-filled eyes: a novel formula for axial length calculation in eyes with 1000 cSt silicone oil. Indian J Ophthalmol. 2023;71(6):2466–2468. doi:10.4103/ijo.IJO_2187_22
  • Kane JX, LaHood BR, Goggin M. Analysis of posterior corneal surgically induced astigmatism following cataract surgery with a 1.8-mm temporal clear corneal incision. J Refract Surg. 2023;39(6):381–386. doi:10.3928/1081597X-20230426-01
  • Bao T, Wang L, Liu C, Yang Y, Pang Y. Analysis of biometric parameters of cataract eyes measured with optical biometer Lenstar LS900, IOL Master 700, and OPD-SCAN III. Photodiagnosis Photodyn Ther. 2023;43:103646. doi:10.1016/j.pdpdt.2023.103646
  • Röggla V, Langenbucher A, Leydolt C, et al. Best fit formula approach in delayed sequential bilateral cataract surgery. Clin Exp Ophthalmol. 2023;51(6):559–565. doi:10.1111/ceo.14261
  • Domínguez-Vicent A, Venkataraman AP, Dalin A, Brautaset R, Montés-Micó R. Repeatability of a fully automated swept-source optical coherence tomography biometer and agreement with a low coherence reflectometry biometer. Eye Vis. 2023;10(1):24.
  • Gjerdrum B, Gundersen KG, Nilsen C, Gundersen M, Jensen P. Refractive predictability and biometry agreement of a combined swept source optical coherence and reflectometry biometer compared to an optical low coherence reflectometry biometer and an SS-OCT Biometer. Clin Ophthalmol. 2023;17:1439–1452.
  • Nihalani BR, Oke I, VanderVeen DK. Comparison of baseline biometry measures in eyes with pediatric cataract to age-matched controls. Graefes Arch Clin Exp Ophthalmol. 2023;261(10):3007–3013. doi:10.1007/s00417-023-06122-0
  • Neoh FP, A Y, Siti AA, Liza-Sharmini AT. Anterior Segment Biometry In Primary Angle Closure Glaucoma Patients With Visual Field Progression: Comparison Between Malays and Chinese. J Curr Glaucoma Pract. 2023;17(1):3–8. doi:10.5005/jp-journals-10078-1391
  • Zhao MH, Song Y, Liu JL, et al. Investigation of ocular biometry in 4- to 9-year-old Chinese children. BMC Ophthalmol. 2023;23(1):225. doi:10.1186/s12886-023-02975-5
  • Badakere A, Ghaisas SP, Akshya P, Natarajan V, Guha S, Agarkar S. Intraocular lens formula calculation in pediatric eyes: do we have an answer? A retrospective comparison between sanders-retzlaff-kraff ii and barret’s formula. Indian J Ophthalmol. 2023;71(5):2139–2142. doi:10.4103/IJO.IJO_3191_22
  • Mukhija R, Vanathi M, Verma M, Raj N, Gupta N, Tandon R. Comparative evaluation of intraoperative aberrometry and Barrett’s toric calculator in toric intraocular lens implantation. Indian J Ophthalmol. 2023;71(5):1918–1923. doi:10.4103/ijo.IJO_2092_22
  • Sivakumar T, Palmowski-Wolfe A. Retrospective comparison of the myopia master and the lenstar ls900 axial length measurements in children with myopia [published correction appears in klin monbl augenheilkd. 2023 apr;240(4):e2]. retrospektiver vergleich der axiallängenmessungen mit myopia master und lenstar ls900 bei kindern mit myopie [published correction appears in klin monbl augenheilkd. 2023 apr; 240(4):e2]. Klin Monbl Augenheilkd. 2023;240(4):587–590. doi:10.1055/a-2013-2557
  • Tañá-Rivero P, Tello-Elordi C, Orts-Vila P, Tañá-Sanz P, Tañá-Sanz S. Agreement of corneal diameter and anterior chamber depth measurements with the IOLMaster 500 and the IOLMaster 700 optical biometers in myopic eyes. Clin Ophthalmol. 2023;17:1245–1253. doi:10.2147/OPTH.S409132
  • Michael R, Wirkner K, Engel C, Loeffler M, Kirsten T, Rauscher FG. Feasibility and repeatability of ocular biometry measured with IOLMaster 700 in a large population-based study. Ophthalmic Physiol Opt. 2023;43(4):860–873. doi:10.1111/opo.13148
  • Lin L, Xu M, Mo E, et al. Accuracy of newer generation iol power calculation formulas in eyes with high axial myopia. J Refract Surg. 2021;37(11):754–758. doi:10.3928/1081597X-20210712-08
  • Tañá-Rivero P, Tañá-Sanz S, Pastor-Pascual F, Ruiz-Mesa R, Montés-Micó R. Axial length measurement failure rates using optical biometry based on swept-source OCT in cataractous eyes. Expert Rev Med Devices. 2022;19(8):633–640. doi:10.1080/17434440.2022.2118047
  • Kongsap P. Comparison of a new optical biometer and a standard biometer in cataract patients. Eye Vis. 2016;3(1):27. doi:10.1186/s40662-016-0059-1