1
Views
0
CrossRef citations to date
0
Altmetric
CLINICAL TRIAL REPORT

Evaluation of Higher-Order Aberrations After the Smooth Incision Lenticular Keratomileusis (SILKTM) Procedure Using the ELITATM Femtosecond Platform for Correction of Myopic and Astigmatic Refractive Errors

ORCID Icon, , , &
Pages 2155-2166 | Received 23 Apr 2024, Accepted 10 Jul 2024, Published online: 23 Jul 2024

References

  • Liang J, Grimm B, Goelz S, Bille JF. Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A. 1994;11(7):1949–1957. doi:10.1364/JOSAA.11.001949
  • Liang J, Williams DR. Aberrations and retinal image quality of the normal human eye. J Opt Soc Am A. 1997;14(11):2873–2883. doi:10.1364/JOSAA.14.002873
  • Thibos LN, Applegate RA, Schwiegerling JT, Webb R. Standards for reporting optical aberrations of eyes. J Refract Surg. 2002;18(5):S652–S660. doi:10.3928/1081-597X-20020901-30
  • Salmon TO, Van de Pol C. Normal-eye Zernike coefficients and root-mean-square wavefront errors. J Cataract Refract Surg. 2006;32(12):2064–2074. doi:10.1016/j.jcrs.2006.07.022
  • Porter J, Guirao A, Cox I, Williams DR. Monochromatic aberrations of the human eye in a large population. J Opt Soc Am A. 2001;18(8):1793–1803. doi:10.1364/JOSAA.18.001793
  • Lombardo M, Lombardo G. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J Cataract Refract Surg. 2010;36(2):313–331. doi:10.1016/j.jcrs.2009.09.026
  • Yoon GY, Williams DR. Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J Opt Soc Am A. 2002;19(2):266–275. doi:10.1364/JOSAA.19.000266
  • Wang L, Santaella RM, Booth M, Koch DD. Higher-order aberrations from the internal optics of the eye. J Cataract Refract Surg. 2005;31(8):1512–1519. doi:10.1016/j.jcrs.2004.01.048
  • Miller JM, Anwaruddin R, Straub J, Schwiegerling J. Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas. J Refract Surg. 2002;18(5):S579–S583. doi:10.3928/1081-597X-20020901-16
  • Sugar A, Hood CT, Mian SI. Patient-reported outcomes following LASIK: quality of Life in the PROWL Studies. JAMA. 2017;317(2):204–205. doi:10.1001/jama.2016.19323
  • Ang M, Gatinel D, Reinstein DZ, Mertens E, Del Barrio JL A, Alió JL. Refractive surgery beyond 2020. Eye. 2021;35(2):362–382. doi:10.1038/s41433-020-1096-5
  • Pallikaris IG, Papatzanaki ME, Stathi EZ, Frenschock O, Georgiadis A. Laser in situ keratomileusis. Lasers Surg Med. 1990;10(5):463–468. doi:10.1002/lsm.1900100511
  • Knorz MC. Flap and interface complications in LASIK. Curr Opin Ophthalmol. 2002;13(4):242–245. doi:10.1097/00055735-200208000-00010
  • Ambrosio RJ, Wilson SE. Complications of laser in situ keratomileusis: etiology, prevention, and treatment. J Refract Surg. 2001;17(3):350–379. doi:10.3928/1081-597X-20010501-09
  • Lubatschowski H, Maatz G, Heisterkamp A, et al. Application of ultrashort laser pulses for intrastromal refractive surgery. Graefe’s Arch Clin Exp Ophthalmol. 2000;238(1):33–39. doi:10.1007/s004170050006
  • Ratkay-Traub I, Juhasz T, Horvath C, et al. Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation. Ophthalmol Clin N Am. 2001;14:347–355.
  • Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6-month prospective study. Br J Ophthalmol. 2011;95(3):335–339. doi:10.1136/bjo.2009.174284
  • Shah R, Shah S, Sengupta S. Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery. J Cataract Refract Surg. 2011;37(1):127–137. doi:10.1016/j.jcrs.2010.07.033
  • Kamiya K, Shimizu K, Igarashi A, Kobashi H. Visual and refractive outcomes of femtosecond lenticule extraction and small incision lenticule extraction for myopia. Am J Ophthalmol. 2014;157(1):128–134. doi:10.1016/j.ajo.2013.08.011
  • Moshirfar M, McCaughey MV, Reinstein DZ, Shah R, Santiago-Caban L, Fenzl CR. Small-incision lenticule extraction. J Cataract Refract Surg. 2015;41(3):652–665. doi:10.1016/j.jcrs.2015.02.006
  • Reinstein DZ, Archer TJ, Carp GI. The Surgeon’s Guide to Small Incision Lenticule Extraction (SMILE). Thorofare, New Jersey: SLACK Incorporated; 2018.
  • Moshirfar M, Murri MS, Shah TJ, et al. Initial single-site surgical experience with SMILE: a comparison of results to FDA SMILE, and the earliest and latest generation of LASIK. Ophthalmol Ther. 2018;7(2):347–360. doi:10.1007/s40123-018-0137-7
  • Moreno-Barriuso E, Merayo Lloves J, Marcos S, et al. Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. Invest Ophthalmol Vis Sci. 2001;42(6):1396–1403.
  • Mrochen M, Kaemmerer M, Mierdel P, Seiler T. Increased higher-order optical aberrations after laser refractive surgery; a problem of subclinical decentration. J Cataract Refract Surg. 2001;27(3):362–369. doi:10.1016/S0886-3350(00)00806-3
  • Waheed S, Chalita MR, Xu M, et al. Flap-induced and laser-induced ocular aberrations in a two-step LASIK procedure. J Refract Surg. 2004;21(4):346–352. doi:10.3928/1081-597X-20050701-08
  • Li X, Wang Y, Dou R. Aberration compensation between anterior and posterior corneal surfaces after Small incision lenticule extraction and Femtosecond laser-assisted laser in-situ keratomileusis. Ophthalmic Physiol Opt. 2015;35(5):540–551. doi:10.1111/opo.12226
  • Liu M, Chen Y, Wang D, et al. Clinical outcomes after SMILE and Femtosecond laser-assisted LASIK for myopia and myopic astigmatism: a prospective randomized comparative study. Cornea. 2016;35(2):210–216. doi:10.1097/ICO.0000000000000707
  • Chen X, Wang Y, Zhang J, Yang SN, Li X, Zhang L. Comparison of ocular higher-order aberrations after SMILE and Wavefront-guided Femtosecond LASIK for myopia. BMC Ophthalmol. 2017;17(1):42. doi:10.1186/s12886-017-0431-5
  • Hamilton DR, Chen AC, Khorrami R, Nutkiewicz M, Nejad M. Comparison of early visual outcomes after low-energy SMILE, high-energy SMILE, and LASIK for myopia and myopic astigmatism in the United States. J Cataract Refract Surg. 2021;47(1):18–26. doi:10.1097/j.jcrs.0000000000000368
  • Jin HY, Wan T, Wu F, Yao K. Comparison of visual results and higher-order aberrations after small incision lenticule extraction (SMILE): high myopia vs. mild to moderate myopia. BMC Ophthalmol. 2017;17(1):118. doi:10.1186/s12886-017-0507-2
  • Sachdev MS, Shetty R, Khamar P, et al. Safety and effectiveness of smooth incision lenticular keratomileusis (SILKTM) using the ELITA(TM) femtosecond laser system for correction of myopic and astigmatic refractive errors. Clin Ophthalmol. 2023;17:3761–3773. doi:10.2147/OPTH.S432459
  • Feng YF, Yu JG, Wang DD, et al. The effect of hinge location on corneal sensation and dry eye after LASIK: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2013;251(1):357–366. doi:10.1007/s00417-012-2078-5
  • Xu Y, Yang Y. Dry eye after small incision lenticule extraction and LASIK for myopia. J Refract Surg. 2014;30(3):186–190. doi:10.3928/1081597X-20140219-02
  • Denoyer A, Landman E, Trinh L, et al. Dry eye disease after refractive surgery: comparative outcomes of small incision lenticule extraction versus LASIK. Ophthalmology. 2015;122(4):669–676. doi:10.1016/j.ophtha.2014.10.004
  • United States Food and Drug Administration. Summary of safety and effectiveness data (P150040/S003). Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf15/p150040s003b.pdf. Accessed October 4, 2018.
  • Chen L, Bing L, Fu H. Evaluating the accuracy of refractive lenticule created by a new femtosecond laser in glass. Invest Ophthalmol Visual Sci. 2020;61(7):3592.
  • Minoguchi H, Rahaman R, Gao G, Umar A, Fu H. Assessment of corneal tissue interface quality for optimization of femtosecond laser SILK refractive surgery. Invest Ophthalmol Visual Sci. 2024;65:1065.
  • Sarayba MA, Ignacio TS, Binder PS, Tran DB. Comparative study of stromal bed quality by using mechanical, IntraLase femtosecond laser F15- and 30-kHz microkeratomes. Cornea. 2007;26(4):446–451. doi:10.1097/ICO.0b013e318033e7cc
  • Durrie DS, Kezirian GM. Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study. J Cataract Refract Surg. 2005;31(1):120–126. doi:10.1016/j.jcrs.2004.09.046
  • Izquierdo L, Sossa D, Ben-Shaul O, Henriquez MA. Corneal lenticule extraction assisted by a low-energy femtosecond laser. J Cataract Refract Surg. 2020;46(9):1217–1221. doi:10.1097/j.jcrs.0000000000000236
  • Nanavaty MA, Naveed H, Ashena Z, Mukhija R. Ex-vivo study on the surface quality of corneal lenticule and stroma after low energy femtosecond laser lenticule extraction. Sci Rep. 2022;12(1):10034. doi:10.1038/s41598-022-13468-8
  • Ji YW, Kim M, Yong Kang DS, et al. Lower laser energy levels lead to better visual recovery after small incision lenticule extraction: prospective, randomized clinical trial. Am J Ophthalmol. 2017;179:159–170. doi:10.1016/j.ajo.2017.05.005
  • Ji YW, Kang DSY, Reinstein DZ, et al. Effect of lowering laser energy on the surface roughness of human corneal lenticules in small incision lenticule extraction. J Refract Surg. 2017;33(9):617–624. doi:10.3928/1081597X-20170620-02
  • Donate D, Thaeron R. Lower energy levels improve visual recovery in small incision lenticule extraction (SMILE). J Refract Surg. 2016;32(9):636–642. doi:10.3928/1081597X-20160602-01
  • Yoon G, Macrae S, Williams DR, Cox IG. Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg. 2005;31(1):127–135. doi:10.1016/j.jcrs.2004.10.046
  • Bottos KM, Leite MT, Aventura-Isidro M, et al. Corneal asphericity and spherical aberration after refractive surgery. J Cataract Refract Surg. 2011;37(6):1109–1115. doi:10.1016/j.jcrs.2010.12.058
  • Wu D, Wang Y, Zhang L, Wei S, Tang X. Corneal biomechanical effects: small-incision lenticule extraction versus femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg. 2014;40(6):954–962. doi:10.1016/j.jcrs.2013.07.056
  • Chen L, Singer B, Guirao A, Porter J, Williams DR. Image metrics for predicting subjective image quality. Optom Vis Sci. 2005;82(5):358–369. doi:10.1097/01.OPX.0000162647.80768.7F
  • Mrochen M, Donitzky C, Wüllner C, et al. Wavefront-optimized ablation profiles: theoretical background. J Cataract Refract Surg. 2004;30(4):775–785. doi:10.1016/j.jcrs.2004.01.026
  • Schallhorn SC, Farjo AA, Huang D, et al. Wavefront-guided LASIK for the correction of primary myopia and astigmatism a report by the American Academy of Ophthalmology. Ophthalmology. 2008;115(7):1249–1261. doi:10.1016/j.ophtha.2008.04.010
  • Fabrikant A, Dai G, Chernyak D. Optimization of linear filtering model to predict post-LASIK corneal smoothing based on training data sets. Appl Math. 2013;4(12):1694–1701. doi:10.4236/am.2013.412230
  • Voorhees A, Fu H. Finite element comparison of biconvex and Plano-Convex lenticule designs for myopic correction. Invest Ophthalmol Visual Sci. 2024;65:1048.
  • He L, Liu A, Manche EE. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis for patients with myopia: a prospective randomized contralateral eye study. Am J Ophthalmol. 2014;157(6):1170–1178. doi:10.1016/j.ajo.2014.02.037
  • Rozema JJ, Hastings GD, Jiménez-García M, Koppen C, Applegate RA. Influence of rigid lens decentration and rotation on visual image quality in normal and keratoconic eyes. Ophthalmic Physiol Opt. 2022;42(6):1204–1213. doi:10.1111/opo.13045
  • Miraftab M, Hashemi H, Aghamirsalim M, Fayyaz S, Asgari S. Matched comparison of corneal higher order aberrations induced by SMILE to femtosecond assisted LASIK and to PRK in correcting moderate and high myopia: 3.00mm vs. 6.00mm. BMC Ophthalmol. 2021;21(1):216. doi:10.1186/s12886-021-01987-3