199
Views
0
CrossRef citations to date
0
Altmetric
Review

Midday Fogging of Scleral Contact Lenses: Current Perspectives

ORCID Icon
Pages 209-219 | Published online: 21 Jul 2021

References

  • Schornack M, Helland M, Nau CB. Change in fluid reservoir turbidity at 20-minute intervals over 2 hours of small diameter scleral lens wear. Invest Ophth Vis Sci. 2015;56:6071.
  • Fogt JS, Karres M, Barr JT. Changes in symptoms of midday fogging with a novel scleral contact lens filling solution. Optom Vis Sci. 2020;97(9):690–696. doi:10.1097/OPX.0000000000001559
  • McKinney A, Miller W, Leach N, et al. The cause of midday visual fogging in scleral gas permeable lens wearers. Invest Ophthalmol Vis Sci. 2013;54:5483.
  • Rathi VM, Mandathara PS, Vaddavalli PK, et al. Fluid Filled scleral contact lens in pediatric patients: challenges and outcome. Cont Lens Anterior Eye. 2012;35(4):189–192. doi:10.1016/j.clae.2012.03.001
  • Schornack MM, Fogt J, Harthan J, et al. Factors Associated with Patient-Reported Midday Fogging in Established Scleral Lens Wearers. Cont Lens Anterior Eye. 2020;43(6):602–608. doi:10.1016/j.clae.2020.03.005
  • Carrasquillo KG, Lipson MJ, Ezekiel DJ, Johns LK. Scleral Lens Complications and Problem Solving. In: Barnett M, Johns LK, editors. Ophthalmology: Current and Future Developments. Bentham Science Publishers; 2017:303–345.
  • Efron N, Jones L, Bron AJ, et al. The Tfos International Workshop on Contact Lens Discomfort: report of the Contact Lens Interactions with the Ocular Surface and Adnexa Subcommittee. Invest Ophthalmol Vis Sci. 2013;54(11):TFOS98–TFOS122. doi:10.1167/iovs.13-13187
  • Robertson DM, Cavanagh HD. The clinical and cellular basis of contact lens-related corneal infections: a review. Clin Ophthalmol. 2008;2:907–917. doi:10.2147/OPTH.S3249
  • Tse V, Tan B, Kim YH, et al. Tear dynamics under scleral lenses. Cont Lens Anterior Eye. 2019;42(1):43–48. doi:10.1016/j.clae.2018.11.016
  • Paugh JR, Chen E, Heinrich C, et al. Silicone hydrogel and rigid gas-permeable scleral lens tear exchange. Eye Contact Lens. 2018;44(2):97–101. doi:10.1097/ICL.0000000000000400
  • Carracedo G, Serramito-Blanco M, Martin-Gil A, et al. Post-lens tear turbidity and visual quality after scleral lens wear. Clin Exp Optom. 2017;100(6):577–582. doi:10.1111/cxo.12512
  • Yu F, Liu X, Zhong Y, et al. Sodium hyaluronate decreases ocular surface toxicity induced by benzalkonium chloride-preserved latanoprost: an in vivo study. Invest Ophthalmol Vis Sci. 2013;54:3385–3393. doi:10.1167/iovs.12-11181
  • Bachman WG, Wilson G. Essential Ions for Maintenance of the Corneal Epithelial Surface. Invest Ophthalmol Vis Sci. 1985;26:1484–1488.
  • Paugh JR, Chen E, Heinrich C; Rismondo V, Osgood TB, Leering P, et al. Electrolyte composition of lacrimal gland fluid and tears of normal and vitamin a-deficient rabbits. CLAO J. 1989;15(3):222–228.
  • Fullard RJ, Wilson GS. Investigation of sloughed corneal epithelial-cells collected by noninvasive irrigation of the corneal surface. Curr Eye Res. 1986;5:847–856. doi:10.3109/02713688609029236
  • Montani G. Effects of different post lens saline filling solutions on midday fogging in habitual scleral lens wearers. Contact Lens Anterio. 2020;44:10. doi:10.1016/j.clae.2020.12.035
  • Li DQ, Lokeshwar BL, Solomon A, et al. Regulation of Mmp-9 Production by Human Corneal Epithelial Cells. Exp Eye Res. 2001;73:449–459. doi:10.1006/exer.2001.1054
  • Yeung D, Murphy PJ, Sorbara L. Comparative analysis of tear proteins in keratoconic scleral lens wearers with variation in limbal clearance. Optom Vis Sci. 2021;98(2):143–149. doi:10.1097/OPX.0000000000001645
  • Walker MK, Lema C, Redfern R. Scleral lens wear: measuring inflammation in the fluid reservoir. Cont Lens Anterior Eye. 2020;43:577–584. doi:10.1016/j.clae.2020.02.017
  • Postnikoff CK, Pucker AD, Laurent J, et al. Identification of leukocytes associated with midday fogging in the post-lens tear film of scleral contact lens wearers. Invest Ophthalmol Vis Sci. 2019;60(1):226–233. doi:10.1167/iovs.18-24664
  • Galvis V, Sherwin T, Tello A, et al. Keratoconus: an Inflammatory Disorder? Eye. 2015;29(7):843–859. doi:10.1038/eye.2015.63
  • Walker M. Scleral Lenses, Clearing the Fog. ISITE Online J. 2014.
  • Willcox MDP. Tear Film, Contact Lenses and Tear Biomarkers. Clinical and Experimental Optometry. 2019;102(4):350–363. doi:10.1111/cxo.12918
  • van Diepen JA, Berbee JFP, Havekes LM, Rensen PCN. Interactions between Inflammation and Lipid Metabolism: relevance for Efficacy of Anti-Inflammatory Drugs in the Treatment of Atherosclerosis. Atherosclerosis. 2013;228:306–315. doi:10.1016/j.atherosclerosis.2013.02.028
  • Sonsino J, Reinoso G, Teller R. Proposed Method to Eliminate Debris in the Scleral Post-Lens Tear Reservoir: Case Report. In: Global Specialty Lens Symposium. Las Vegas, NV: Las Vegas, NV; 2018.
  • Sonsino J, Sclafani LA. Stopping a Scleral Lens from Rockin’ and Rollin’ on a Highly Toric Sclera. In: Global Specialty Lens Symposium. Las Vegas, NV: Las Vegas, NV; 2019.
  • Michaud L, van der Worp E, Brazeau D, et al. Predicting Estimates of Oxygen Transmissibility for Scleral Lenses. Cont Lens Anterior Eye. 2012;35(6):266–271. doi:10.1016/j.clae.2012.07.004
  • Fisher D, Collins MJ, Vincent SJ. Fluid reservoir thickness and corneal oedema during closed eye scleral lens wear: experimental and theoretical outcomes. Cont Lens Anterior Eye. 2021;44(1):124–125. doi:10.1016/j.clae.2020.10.004
  • Fisher D, Collins MJ, Vincent SJ. Fluid reservoir thickness and corneal edema during open-eye scleral lens wear. Optom Vis Sci. 2020;97(9):683–689. doi:10.1097/OPX.0000000000001558
  • Vincent SJ, Alonso-Caneiro D, Collins MJ. The time course and nature of corneal oedema during sealed miniscleral contact lens wear. Cont Lens Anterior Eye. 2019;42(1):49–54. doi:10.1016/j.clae.2018.03.001
  • Skidmore KV, Walker MK, Marsack JD, et al. A measure of tear inflow in habitual scleral lens wearers with and without midday fogging. Contact Lens Anterio. 2019;42:36–42. doi:10.1016/j.clae.2018.10.009
  • Ezekiel D. Gas Permeable Haptic Lenses. Journal of the British Contact Lens Association. 1983;6:158. doi:10.1016/S0141-7037(83)80064-0
  • Fadel D, Ezekiel DF. Fenestrated scleral lenses: back to the origins? review of their benefits and fitting techniques. Optom Vis Sci. 2020;97(9):807–820. doi:10.1097/OPX.0000000000001562
  • Rosenthal P, Croteau A. Fluid-ventilated, gas-permeable scleral contact lens is an effective option for managing severe ocular surface disease and many corneal disorders that would otherwise require penetrating keratoplasty. Eye Contact Lens. 2005;31(3):130–134. doi:10.1097/01.ICL.0000152492.98553.8D
  • Conway M. An Update on Scleral Lenses. In. Global Insight. Curr Opinion Ophthalmol. 2008;19(4):298.
  • DeNaeyer G, Sanders DR, van der Worp E, et al. Qualitative assessment of scleral shape patterns using a new wide field ocular surface elevation topographer: the sssg study. J Cont Lens Res Sci. 2017;1:12–22. doi:10.22374/jclrs.v1i1.11
  • Ritzmann M, Caroline PJ, Borret R, Korszen E. An analysis of anterior scleral shape and its role in the design and fitting of scleral contact lenses. Cont Lens Anterior Eye. 2018;41(2):205–213. doi:10.1016/j.clae.2017.10.010
  • DeNaeyer G, Sanders DR, Farajian TS. Surface coverage with single vs. multiple gaze surface topography to fit scleral lenses. Cont Lens Anterior Eye. 2017;40(3):162–169. doi:10.1016/j.clae.2017.03.009
  • Jesus DA, Kedzia R, Iskander DR. Precise measurement of scleral radius using anterior eye profilometry. Cont Lens Anterior Eye. 2017;40(1):47–52. doi:10.1016/j.clae.2016.11.003
  • Bandlitz S, Esper P, Stein M, et al. Corneoscleral Topography Measured with Fourier-Based Profilometry and Scheimpflug Imaging. Optom Vis Sci. 2020;97(9):766–774. doi:10.1097/OPX.0000000000001572
  • Nau A, Shorter ES, Harthan JS. et al. Multicenter Review of Impression-Based Scleral Devices. Cont Lens Anterior Eye;2020. 101380. doi:10.1016/j.clae.2020.10.010
  • Schornack MM, Fogt J, Harthan J, et al. Factors associated with patient-reported midday fogging in established scleral lens wearers. Cont Lens Anterior Eye. 2020;43(6):602–608.
  • Fadel D. Scleral Lens Issues and Complications Related to a Non-Optimal Fitting Relationship between the Lens and Ocular Surface. Eye & Contact Lens-Science and Clinical Practice. 2019;45:152–163. doi:10.1097/ICL.0000000000000523
  • Nichols JJ. Education highlights from the 2015 gsls specialty contact lens education reigned supreme at this year’s record-breaking conference. Contact Lens Spectrum. 2015;30:22–30.
  • Walker MK, Bergmanson JP, Miller WL, et al. Complications and fitting challenges associated with scleral contact lenses: a review. Cont Lens Anterior Eye. 2016;39(2):88–96. doi:10.1016/j.clae.2015.08.003
  • Courey C, Michaud L. Variation of clearance considering viscosity of the solution used in the reservoir and following scleral lens wear over time. Cont Lens Anterior Eye. 2017;40:260–266. doi:10.1016/j.clae.2017.03.003
  • Pfister RR, Burstein N. The effects of ophthalmic drugs, vehicles, and preservatives on corneal epithelium: a scanning electron microscope study. Invest Ophthalmol. 1976;15:246–259.
  • Dormans JA, van Logten MJ. The effects of ophthalmic preservatives on corneal epithelium of the rabbit: a scanning electron microscopical study. Toxicol Appl Pharmacol. 1982;62:251–261. doi:10.1016/0041-008X(82)90123-5