64
Views
11
CrossRef citations to date
0
Altmetric
Original Research

LncRNA EGOT/miR-211-5p Affected Radiosensitivity of Rectal Cancer by Competitively Regulating ErbB4

, , , , , , , & show all
Pages 2867-2878 | Published online: 28 Apr 2021

References

  • Liang K, Yuan-Guang C, Hao Z, et al. Transanal total mesorectal excision for rectal cancer: a multicentric cohort study. Patterns. 2020;1:1. doi:10.1016/j.patter.2020.100057
  • Arja V, Mehran G, Ries K, Chemistry S. Estimation of prostate cancer probability by logistic regression: free and total prostate-specific antigen, digital rectal examination, and heredity are significant variables. Clin Chem. 2020;7:7.
  • Wang R, Fan Q, Liu H, Medicine M. Isolated vaginal recurrence of early-stage rectal cancer detected by 18F-FDG PET/CT. Clin Nucl Med. 2019;44(6):1.
  • Keller DS, Paula T, Kiran RP. Ready for the national accreditation programs for rectal cancer? Auditing rectal cancer outcomes in the United States. Colorectal Dis. 2019;21:1213–1215. doi:10.1111/codi.14729
  • Lee GC, Bordeianou LG, Francone TD, Blaszkowsky LS, Endoscopy MQ. Superior pathologic and clinical outcomes after minimally invasive rectal cancer resection, compared to open resection. Surg Endoscopy. 2019;34:3435–3448. doi:10.1007/s00464-019-07120-2
  • Khorasani S, Nagarajan A, Nguyen T, Chadi SA. Principles of adjuvant and neoadjuvant therapy for locally advanced rectal cancer. Fundam Anorectal Surg. 2019.
  • Parikh K, DeNittis AS, Marks G, Zeger E, Oncology J. Neoadjuvant chemotherapy and high-dose radiation using intensity-modulated radiotherapy followed by rectal sparing TEM for distal rectal cancer. J Radiation Onco. 2019;8(2):217–224.
  • Li -C-C, Liang J-A, Chen W, Chien C-R. Effectiveness of image-guided radiotherapy for rectal cancer patients treated with neoadjuvant concurrent chemoradiotherapy: a population-based propensity score-matched analysis. Asia-Pacific J Clin Oncol. 2019;15. doi:10.1111/ajco.13196
  • Hu H, Yu X, Zhou J. Long noncoding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy modulation. Biochem Cell Biol. 2020;98(2):130–6
  • Yang L, Li L, Zhou Z, Liu Y, International S. SP1 induced long non-coding RNA LINC00958 overexpression facilitate cell proliferation, migration and invasion in lung adenocarcinoma via mediating miR-625-5p/CPSF7 axis. cancer cell int. 2020;20:1.
  • Farhana M, Varinder J, Clements JA, Yousef GM, Jyotsna B. MicroRNA theranostics in prostate cancer precision medicine. clin chem. 2020;10:10.
  • Xue Y, Ni T, Jiang Y, Li Y. Long noncoding RNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer. Oncol Res. 2017;25:8.
  • Kumar M, Devaux RS, Shen JJ, Davis SP, Herschkowitz JI. Abstract 1598: lncRNA AK001796 as a therapeutic target in aggressive breast cancers. Cancer Res. 2016;76(14 Supplement):1598.
  • Jin L, Quan J, Pan X, et al. Identification of lncRNA EGOT as a tumor suppressor in renal cell carcinoma. Mol Med Rep. 2017;16(5):7072–7079. doi:10.3892/mmr.2017.7470
  • Peng W, Wu J, Fan H, Lu J, Feng J, Research O. LncRNA EGOT promotes tumorigenesis via hedgehog pathway in gastric cancer. Pathol Oncol Res. 2017;25(1):1–5.
  • Xiao B, Zhang W, Chen L, et al. Analysis of the miRNA–mRNA–lncRNA network in human estrogen receptor-positive and estrogen receptor-negative breast cancer based on TCGA data. Gene. 2018;658:28–35. doi:10.1016/j.gene.2018.03.011
  • Emma R, Niku O, Terho L. MicroRNAs in the atherosclerotic plaque. Clin Chem. 2020;12:12.
  • Nerea M, Teresa VM, Ricardo GC, et al. Tumor MicroRNA expression profiling identifies circulating MicroRNAs for early breast cancer detection. Clin Chem. 2020;8:8.
  • Li T, Ma J, Han X, et al. MicroRNA-320 enhances radiosensitivity of glioma through down-regulation of sirtuin type 1 by directly targeting forkhead box protein M1. Transl Oncol. 2018;11(2):205–212. doi:10.1016/j.tranon.2017.12.008
  • Quan J, Pan X, He T, et al. Tumor suppressor miR-211-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Exp Ther Med. 2018. doi:10.3892/etm.2018.5908
  • Díazmartínez M, Benitojardón L, Alonso L, Koetzploch L, Hernando E, Teixido J. miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma. Cancer Res. 2018;78(4):1017.
  • Shin-ichi F, Tadao F, Hideo H, et al. Quantitative analysis of a MDR1 transcript for prediction of drug resistance in acute leukemia. Clin Chem. 2020;6:6.
  • Murakami A, Nakamura M, Kaneko S, Lin WL, Kusaka H. Aberrant accumulation of ErbB4 in progressive supranuclear palsy. Neuropathol Appl Neurobiol. 2018;44:6. doi:10.1111/nan.12460
  • Liu Q, Cornejo KM, Cheng L, Hutchinson L, Jiang Z. Next-generation sequencing to detect deletion of RB1 and ERBB4 genes in chromophobe renal cell carcinoma: a potential role in distinguishing chromophobe renal cell carcinoma from renal oncocytoma. Am J Pathol. 2018;188:4.
  • Sanaa E, Seada L. Quantitation of bcl-2 protein in bladder cancer tissue by enzyme immunoassay: comparison with Western blot and immunohistochemistry. Clin Chem. 2020;7:7.
  • Valentini V, Schmoll H, Velde J. Multidisciplinary management of rectal cancer: questions and answers. oncol hematol. 2018.
  • Caycedo-Marulanda A, Jiang HY, Kohtakangas E. Outcomes of a single surgeon-based transanal-total mesorectal excision (TATME) for rectal cancer. J Gastrointest Cancer. 2018;49(4):455–462. doi:10.1007/s12029-017-9989-7
  • Das P, Minsky BD. Radiation therapy for rectal cancer. rec cancer. 2018.
  • Chang X, Xue X, Zhang Y, Zhang G, Liu H. The role of NRAGE subcellular location and epithelial–mesenchymal transition on radiation resistance of esophageal carcinoma cell. J Cancer Res Ther. 2018;14(1):46.
  • Ma J, Lu Y, Zhang S, Li Y, Xu S. Differentiation, β-Trcp ubiquitin ligase and RSK2 kinase-mediated degradation of FOXN2 promotes tumorigenesis and radioresistance in lung cancer. cell death differ. 2018;25(8).
  • Wan Y, Cycle Z-Q. LncRNA NEAT1 affects inflammatory response by targeting miR-129-5p and regulating Notch signaling pathway in epilepsy. cell cycle. 2020;11:1–13.
  • Lorenzen JM, Celina S, Malte K, et al. Long noncoding RNAs in urine are detectable and may enable early detection of acute T cell–mediated rejection of renal allografts. Clin Chem. 2020;12:12.
  • Zheng Z, Zhang X, Wang J, et al. Exposure to fine airborne particulate matters induces hepatic fibrosis in murine models. J Hepatol. 2015;63(6):1397–1404. doi:10.1016/j.jhep.2015.07.020
  • Wu X, Cao XB, Chen F. WITHDRAWN: lncRNA-HOTAIR activates tumor cell proliferation and migration by suppressing MiR-326 in cervical cancer. Oncol Res. 2019.
  • Liu Z, Xu S, Dao J, Gan Z, Physiology X. Differential expression of lncRNA/miRNA/mRNA and their related functional networks during the osteogenic/odontogenic differentiation of dental pulp stem cells. Mol Cancer. 2019;2.
  • Cui S, Cao Z, Guo W, Yu H, University Y. Plasma miRNA-23a and miRNA-451 as candidate biomarkers for early diagnosis of nonsmall cell lung cancer: a case-control study. J South Med Univ. 2019;39(6):705–711. doi:10.12122/j.issn.1673-4254.2019.06.12
  • Wang J, Xu J, Fu J, et al. MiR-29a regulates radiosensitivity in human intestinal cells by targeting PTEN gene. Nan Fang Yi Ke Da Xue Xue Bao. 2016;186(3):292.
  • Liu Z, Liang X, Li X, et al. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Radiat Res. 2019;8.
  • Shen H, Wang L, Xiong J, Ren C. Long non-coding RNA CCAT1 promotes cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis. Toxicol Res (Camb). 2019;18(10):1–12.
  • Lin TW, Tan Z, Barik A, et al. Regulation of synapse development by Vgat deletion from ErbB4-positive interneurons. Cell Cycle. 2018;38(10):617669.
  • Wang N, Zhang Z, Lv J. Fentanyl inhibits proliferation and invasion via enhancing miR‑302b expression in esophageal squamous cell carcinoma. Oncol Letters. 2018. doi:10.3892/ol.2018.8616
  • Vexler A, Starr A, Gladish V, et al. The role of ErbB-4 expression in non-small cell lung cancer (NSCLC) in cell growth and sensitivity to chemo- and radiotherapy. Cancer Res. 2004;64.
  • Turner HC, Brenner DJ, Chen Y, Bertucci A, Garty G. Adapting the γ-H2AX assay for automated processing in human lymphocytes. 1. Technological aspects. Radiat Res. 2011;175(3):282–290. doi:10.1667/RR2125.1