107
Views
8
CrossRef citations to date
0
Altmetric
Original Research

The ALDOA Metabolism Pathway as a Potential Target for Regulation of Prostate Cancer Proliferation

, , , , , , ORCID Icon & ORCID Icon show all
Pages 3353-3366 | Published online: 24 May 2021

References

  • Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Mens Health. 2018;12:1807–1823. doi:10.1177/1557988318798279
  • Crawford ED, Higano CS, Shore ND, Hussain M, Petrylak DP. Treating patients with metastatic castration resistant prostate cancer: a comprehensive review of available therapies. J Urol. 2015;194:1537–1547. doi:10.1016/j.juro.2015.06.106
  • Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305. doi:10.1038/nm.4045
  • Dhanalakshmi S, Singh R. Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappaB: implications for angioprevention and antiangiogenic therapy. Oncogene. 2005;24:1188–1202. doi:10.1038/sj.onc.1208276
  • Pelicano H, Martin D, Xu R, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25:4633–4646. doi:10.1038/sj.onc.1209597
  • Sborov DW, Haverkos BM, Harris PJ. Investigational cancer drugs targeting cell metabolism in clinical development. Expert Opin Investig Drugs. 2015;24:79–94. doi:10.1517/13543784.2015.960077
  • Dwarakanath B, Jain V. Targeting glucose metabolism with 2-deoxy-D-glucose for improving cancer therapy. Future Oncol. 2009;5:581–585. doi:10.2217/fon.09.44
  • Landau BR, Laszlo J, Stengle J, Burk D. Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. J Natl Cancer Inst. 1958;21:485–494.
  • Maher JC, Krishan A, Lampidis TJ. Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol. 2004;53:116–122. doi:10.1007/s00280-003-0724-7
  • Ray U. Roy SS1: aberrant lipid metabolism in cancer cells – the role of oncolipid-activated signaling. FEBS J. 2018;285:432–443. doi:10.1111/febs.14281
  • Lin ZY, Chen G, Zhang YQ, et al. MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer. Mol Cancer. 2017;16:48. doi:10.1186/s12943-017-0615-x
  • Liang Y, Zhuo Y, Lin Z, et al. Decreased Expression of MYPT1 Contributes To Tumor Angiogenesis and Poor Patient Prognosis in Human Prostate Cancer. Curr Mol Med. 2018;18(2):100–108. doi:10.2174/1566524018666180705111342
  • Ji S, Zhang B, Liu J, et al. ALDOA functions as an oncogene in the highly metastatic pancreatic cancer. Cancer Lett. 2016;374:127–135. doi:10.1016/j.canlet.2016.01.054
  • Shi S, Ji S, Qin Y, et al. Metabolic tumor burden is associated with major oncogenomic alterations and serum tumor markers in patients with resected pancreatic cancer. Cancer Lett. 2015;360:227–233. doi:10.1016/j.canlet.2015.02.014
  • Long F, Cai X, Luo W, Chen L, Li K. Role of aldolase A in osteosarcoma progression and metastasis: in vitro and in vivo evidence. Oncol Rep. 2014;32:2031–2037. doi:10.3892/or.2014.3473
  • Du S, Guan Z, Hao L, et al. Fructose-bisphosphate aldolase A is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration. PLoS One. 2014;9:e85804. doi:10.1371/journal.pone.0085804
  • Chang L, Ni J, Beretov J, et al. Identification of protein biomarkers and signaling pathways associated with prostate cancer radio resistance using label-free LC-MS/MS proteomic approach. Sci Rep. 2017;7:41834. doi:10.1038/srep41834
  • Taylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22. doi:10.1016/j.ccr.2010.05.026
  • Cai C, Chen Q-B, Han Z-D, et al. miR-195 inhibits tumor progression by targeting RPS6KB1 in Human Prostate Cancer. Clin Cancer Res. 2015;21:4922–4934. doi:10.1158/1078-0432.CCR-15-0217
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–1033. doi:10.1126/science.1160809
  • Patel CH, Powell JD. Warburg meets epigenetics [J]. Science. 2016;354:419–420. doi:10.1126/science.aak9776
  • Massie CE, Lynch A, Ramos-Montoya A, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30:2719–2733. doi:10.1038/emboj.2011.158
  • Gonzalez-Menendez P, Hevia D, Alonso-Arias R, et al. GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biol. 2018;17:112–127. doi:10.1016/j.redox.2018.03.017
  • Fendt SM, Bell EL, Keibler MA, et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 2013;73:4429–4438. doi:10.1158/0008-5472.CAN-13-0080
  • Rose IA, O’Connell EL. Studies on the interaction of aldolase with substrate analogues. J Biol Chem. 1969;244:126–134. doi:10.1016/S0021-9258(19)78201-5
  • Xin Li, Fengxing Jiang, Zhong Ge, et al. Fructose-Bisphosphate Aldolase A Regulates Hypoxic Adaptation in Hepatocellular Carcinoma and Involved with Tumor Malignancy. Dig Dis Sci. 2019;64(11):3215-3227. doi:10.1007/s10620-019-05642-2. Epub 2019 Apr 30
  • Yamamoto T, Kudo M, Peng WX, et al. Identification of aldolase A as a potential diagnostic biomarker for colorectal cancer based on proteomic analysis using formalin-fixed paraffin-embedded tissue. Tumour Biol. 2016;37:13595–13606. doi:10.1007/s13277-016-5275-8
  • Fu H, Gao H, Qi X, et al. Aldolase A promotes proliferation and G1/S transition via the EGFR/MAPK pathway in non-small cell lung cancer. Cancer Commun. 2018;38:18. doi:10.1186/s40880-018-0290-3
  • Grandjean G, de Jong PR, James B, et al. Definition of a novel feed-forward mechanism for glycolysis-HIF1α signaling in hypoxic tumors highlights Aldolase A as a therapeutic target. Cancer Res. 2016;76:4259–4269. doi:10.1158/0008-5472.CAN-16-0401
  • Kawai K, Uemura M, Munakata K, et al. Fructose-bisphosphate aldolase A is a key regulator of hypoxic adaptation in colorectal cancer cells and involved in treatment resistance and poor prognosis. Int J Oncol. 2017;50:525–534. doi:10.3892/ijo.2016.3814
  • Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269:23757–23763. doi:10.1016/S0021-9258(17)31580-6
  • Sharp FR, Bernaudin M. HIF1 and oxygen sensing in the brain. Nat Rev Neurosci. 2004;5:437–448. doi:10.1038/nrn1408
  • Heron PW, Abellán-Flos M, Salmon L, Sygusch J. Bisphosphonate inhibitors of mammalian glycolytic aldolase. J Med Chem. 2018;61:10558–10572. doi:10.1021/acs.jmedchem.8b01000
  • Uttarkar S, Dukare S, Bopp B, et al. Phosphate inhibits the activity of the transcription factor myb by blocking the interaction with the KIX domain of the coactivator p300. Mol Cancer Ther. 2015;14:1276–1285. doi:10.1158/1535-7163.MCT-14-0662