126
Views
7
CrossRef citations to date
0
Altmetric
Review

Consequences of Mutations and Abnormal Expression of SMAD4 in Tumors and T Cells

, ORCID Icon & ORCID Icon
Pages 2531-2540 | Published online: 13 Apr 2021

References

  • Derynck R, Gelbart WM, Harland RM, et al. Nomenclature: vertebrate mediators of TGFbeta family signals. Cell. 1996;87(2):173. doi:10.1016/S0092-8674(00)81335-5
  • Nakao A. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997;16(17):5353–5362. doi:10.1093/emboj/16.17.5353
  • Liu F, Hata A, Baker JC, et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature. 1996;381(6583):620–623. doi:10.1038/381620a0
  • Kim SK. DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res. 1996;56(11):2519–2521.
  • Xu X, Brodie SG, Yang X, et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene. 2000;19(15):1868–1874. doi:10.1038/sj.onc.1203504
  • Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 2005;21:659–693. doi:10.1146/annurev.cellbio.21.022404.142018
  • Shi WB. GADD34-PP1c recruited by Smad7 dephosphorylates TGF beta type 1 receptor. J Cell Biol. 2004;164(2):291–300. doi:10.1083/jcb.200307151
  • Hata A, Lagna G, Massague J, et al. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 1998;12(2):186–197. doi:10.1101/gad.12.2.186
  • Moustakas A, Heldin CH. From mono- to oligo-Smads: the heart of the matter in TGF-beta signal transduction. Genes Dev. 2002;16(15):1867–1871. doi:10.1101/gad.1016802
  • Weinberg RA. How cancer arises. Sci Am. 1996;275(3):62–70. doi:10.1038/scientificamerican0996-62
  • Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–767. doi:10.1016/0092-8674(90)90186-I
  • Rozenblum E. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 1997;57(9):1731–1734.
  • Oliner JD, Kinzler KW, Meltzer PS, et al. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358(6381):80–83. doi:10.1038/358080a0
  • Reifenberger G, Liu L, Ichimura K, et al. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 1993;53(12):2736–2739.
  • Shapiro GI, Edwards CD, Kobzik L, et al. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res. 1995;55(3):505–509.
  • Bartkova J. The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. Cancer Res. 1996;56(23):5475–5483.
  • Hahn SA, Schutte M, Hoque ATMS, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271(5247):350–353. doi:10.1126/science.271.5247.350
  • Lazzereschi D, Nardi F, Turco A, et al. A complex pattern of mutations and abnormal splicing of Smad4 is present in thyroid tumours. Oncogene. 2005;24(34):5344–5354. doi:10.1038/sj.onc.1208603
  • Watanabe M, Masuyama N, Fukuda M, et al. Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 2000;1(2):176–182. doi:10.1093/embo-reports/kvd029
  • Baburajendran N, Jauch R, Tan CYZ, et al. Structural basis for the cooperative DNA recognition by Smad4 MH1 dimers. Nucleic Acids Res. 2011;39(18):8213–8222. doi:10.1093/nar/gkr500
  • Zboralski D, Böckmann M, Zapatka M, et al. Divergent mechanisms underlie Smad4-mediated positive regulation of the three genes encoding the basement membrane component laminin-332 (laminin-5). BMC Cancer. 2008;8(p):215. doi:10.1186/1471-2407-8-215
  • Xiao Z, Latek R, Lodish HF. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity. Oncogene. 2003;22(7):1057–1069.
  • Feng XH. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev. 1998;12(14):2153–2163. doi:10.1101/gad.12.14.2153
  • Hata A, Lo RS, Wotton D, et al. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature. 1997;388(6637):82–87. doi:10.1038/40424
  • Qin BY, Chacko BM, Lam SS, et al. Structural basis of Smad1 activation by receptor kinase phosphorylation. Mol Cell. 2001;8(6):1303–1312. doi:10.1016/S1097-2765(01)00417-8
  • Colmenares C, Stavnezer E. The ski oncogene induces muscle differentiation in quail embryo cells. Cell. 1989;59(2):293–303. doi:10.1016/0092-8674(89)90291-2
  • Berk M. Mice lacking the ski proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development. Genes Dev. 1997;11(16):2029–2039. doi:10.1101/gad.11.16.2029
  • Wu JW, Krawitz AR, Chai J, et al. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell. 2002;111(3):357–367. doi:10.1016/S0092-8674(02)01006-1
  • Pierreux CE, Nicolás FJ, Hill CS. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol. 2000;20(23):9041–9054. doi:10.1128/MCB.20.23.9041-9054.2000
  • Fornerod M. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 1997;90(6):1051–1060. doi:10.1016/S0092-8674(00)80371-2
  • de Caestecker MP, Hemmati P, Larisch-Bloch S, et al. Characterization of functional domains within Smad4/DPC4. J Biol Chem. 1997;272(21):13690–13696. doi:10.1074/jbc.272.21.13690
  • Qin B, Lam SS, Lin K. Crystal structure of a transcriptionally active Smad4 fragment. Structure. 1999;7(12):1493–1503. doi:10.1016/S0969-2126(00)88340-9
  • de Caestecker MP. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem. 2000;275(3):2115–2122. doi:10.1074/jbc.275.3.2115
  • Chen L. Pokemon inhibits transforming growth factor beta-smad4-related cell proliferation arrest in breast cancer through specificity protein 1. J Breast Cancer. 2019;22(1):15–28. doi:10.4048/jbc.2019.22.e11
  • Zhao Y. Astragaloside IV inhibits cell proliferation in vulvar squamous cell carcinoma through the TGF-beta/Smad signaling pathway. Dermatol Ther. 2019;32(4):e12802.
  • De Bosscher K, Hill CS, Nicolás FJ. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. Biochem J. 2004;379(Pt 1):209–216. doi:10.1042/bj20031886
  • Woodford-Richens KL. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc Natl Acad Sci U S A. 2001;98(17):9719–9723. doi:10.1073/pnas.171321498
  • Powell SM. Inactivation of Smad4 in gastric carcinomas. Cancer Res. 1997;57(19):4221–4224.
  • Malkoski SP, Wang XJ. Two sides of the story? Smad4 loss in pancreatic cancer versus head-and-neck cancer. FEBS Lett. 2012;586(14):1984–1992. doi:10.1016/j.febslet.2012.01.054
  • Teng Y. Synergistic function of Smad4 and PTEN in suppressing forestomach squamous cell carcinoma in the mouse. Cancer Res. 2006;66(14):6972–6981. doi:10.1158/0008-5472.CAN-06-0507
  • Rocha BR, Colli SDR, Barcelos LM, et al. Age-dependent expression of Pten and Smad4 genes in the urogenital system of Wistar rats. Acta Cir Bras. 2014;29(Suppl 1):34–38. doi:10.1590/S0102-86502014001300007
  • Iacobuzio-Donahue CA. Missense mutations of MADH4: characterization of the mutational hot spot and functional consequences in human tumors. Clin Cancer Res. 2004;10(5):1597–1604. doi:10.1158/1078-0432.CCR-1121-3
  • Gallione C, Aylsworth AS, Beis J, et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am J Med Genet A. 2010;152A(2):333–339. doi:10.1002/ajmg.a.33206
  • Calva-Cerqueira D, Chinnathambi S, Pechman B, et al. The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet. 2009;75(1):79–85. doi:10.1111/j.1399-0004.2008.01091.x
  • Fleming NI, Jorissen RN, Mouradov D, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725–735. doi:10.1158/0008-5472.CAN-12-2706
  • De Roock W, Jonker DJ, Di Nicolantonio F, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304(16):1812–1820. doi:10.1001/jama.2010.1535
  • Imai Y, Kurokawa M, Izutsu K, et al. Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis. Oncogene. 2001;20(1):88–96. doi:10.1038/sj.onc.1204057
  • Maurice D. Loss of Smad4 function in pancreatic tumors: c-terminal truncation leads to decreased stability. J Biol Chem. 2001;276(46):43175–43181. doi:10.1074/jbc.M105895200
  • Aretz S. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet. 2007;44(11):702–709. doi:10.1136/jmg.2007.052506
  • Le Goff C. Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet. 2012;44(1):85–88. doi:10.1038/ng.1016
  • Morén A. Differential ubiquitination defines the functional status of the tumor suppressor Smad4. J Biol Chem. 2003;278(35):33571–33582. doi:10.1074/jbc.M300159200
  • Gallione CJ. SMAD4 mutations found in unselected HHT patients. J Med Genet. 2006;43(10):793–797. doi:10.1136/jmg.2006.041517
  • Woodford-Richens KL, Rowan AJ, Poulsom R, et al. Comprehensive analysis of SMAD4 mutations and protein expression in juvenile polyposis: evidence for a distinct genetic pathway and polyp morphology in SMAD4 mutation carriers. Am J Pathol. 2001;159(4):1293–1300. doi:10.1016/S0002-9440(10)62516-3
  • Miyaki M, Iijima T, Konishi M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 1999;18(20):3098–3103. doi:10.1038/sj.onc.1202642
  • Hahn SA. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 1996;56(3):490–494.
  • Chung AD, Mortelé KJ. Combined juvenile polyposis syndrome and hereditary hemorrhagic telangiectasia (JPS/HHT) with MRI and endoscopic correlation. Clin Imaging. 2019;54:37–39. doi:10.1016/j.clinimag.2018.11.011
  • Blackford A, Serrano OK, Wolfgang CL, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674–4679. doi:10.1158/1078-0432.CCR-09-0227
  • Yang L. Acute myelogenous leukemia-derived SMAD4 mutations target the protein to ubiquitin-proteasome degradation. Hum Mutat. 2006;27(9):897–905. doi:10.1002/humu.20387
  • Bellaye PS. The small heat-shock protein αB-crystallin is essential for the nuclear localization of Smad4: impact on pulmonary fibrosis. J Pathol. 2014;232(4):458–472. doi:10.1002/path.4314
  • Kageyama H. DPC4 splice variants in neuroblastoma. Cancer Lett. 1998;122(1–2):187–193. doi:10.1016/S0304-3835(97)00389-3
  • Chen X, Weisberg E, Fridmacher V, et al. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature. 1997;389(6646):85–89. doi:10.1038/38008
  • Hesling C. Antagonistic regulation of EMT by TIF1γ and Smad4 in mammary epithelial cells. EMBO Rep. 2011;12(7):665–672. doi:10.1038/embor.2011.78
  • Zheng H. ΔFosB regulates Ca2+ release and proliferation of goat mammary epithelial cells. Gene. 2014;545(2):241–246. doi:10.1016/j.gene.2014.05.023
  • Yu J. Altered expression of genes of the Bmp/Smad and Wnt/calcium signaling pathways in the cone-only Nrl-/- mouse retina, revealed by gene profiling using custom cDNA microarrays. J Biol Chem. 2004;279(40):42211–42220. doi:10.1074/jbc.M408223200
  • Wilentz RE. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000;60(7):2002–2006.
  • McCarthy DM, Hruban RH, Argani P, et al. Role of the DPC4 tumor suppressor gene in adenocarcinoma of the ampulla of Vater: analysis of 140 cases. Mod Pathol. 2003;16(3):272–278. doi:10.1097/01.MP.0000057246.03448.26
  • Chen H. Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res. 2009;69(24):9228–9235. doi:10.1158/0008-5472.CAN-09-1950
  • Wang C, Sun Y, Wu H, et al. Distinguishing adrenal cortical carcinomas and adenomas: a study of clinicopathological features and biomarkers. Histopathology. 2014;64(4):567–576. doi:10.1111/his.12283
  • Davison JM, Hartman DA, Singhi AD, et al. Loss of SMAD4 protein expression is associated with high tumor grade and poor prognosis in disseminated appendiceal mucinous neoplasms. Am J Surg Pathol. 2014;38(5):583–592. doi:10.1097/PAS.0000000000000194
  • Park JW, Jang SH, Park DM, et al. Cooperativity of E-cadherin and Smad4 loss to promote diffuse-type gastric adenocarcinoma and metastasis. Mol Cancer Res. 2014;12(8):1088–1099. doi:10.1158/1541-7786.MCR-14-0192-T
  • Yu KH, Ricigliano M, McCarthy B, et al. Circulating tumor and invasive cell gene expression profile predicts treatment response and survival in pancreatic adenocarcinoma. Cancers (Basel). 2018;10(12):467. doi:10.3390/cancers10120467
  • Liang C, Shi S, Qin Y, et al. Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer. Gut. 2020;69(5):888–900. doi:10.1136/gutjnl-2018-317163
  • Wu F, Weigel KJ, Zhou H, et al. Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai). 2018;50(7):730. doi:10.1093/abbs/gmy013
  • Voorneveld PW, Kodach LL, Jacobs RJ, et al. Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology. 2014;147(1):196–208.e13. doi:10.1053/j.gastro.2014.03.052
  • Bornstein S. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest. 2009;119(11):3408–3419. doi:10.1172/JCI38854
  • Antony ML. Changes in expression, and/or mutations in TGF-beta receptors (TGF-beta RI and TGF-beta RII) and Smad 4 in human ovarian tumors. J Cancer Res Clin Oncol. 2010;136(3):351–361. doi:10.1007/s00432-009-0703-4
  • Osman A, Niles EG, LoVerde PT. Expression of functional Schistosoma mansoni Smad4: role in Erk-mediated transforming growth factor beta (TGF-beta) down-regulation. J Biol Chem. 2004;279(8):6474–6486. doi:10.1074/jbc.M310949200
  • Ten Dijke P, Miyazono K, Heldin CH. Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci. 2000;25(2):64–70. doi:10.1016/S0968-0004(99)01519-4
  • Morén A, Itoh S, Moustakas A, et al. Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene. 2000;19(38):4396–4404. doi:10.1038/sj.onc.1203798
  • Huss DJ. TGF-beta signaling via Smad4 drives IL-10 production in effector Th1 cells and reduces T-cell trafficking in EAE. Eur J Immunol. 2011;41(10):2987–2996. doi:10.1002/eji.201141666
  • Ogawa K. Transcriptional regulation of tristetraprolin by transforming growth factor-beta in human T cells. J Biol Chem. 2003;278(32):30373–30381. doi:10.1074/jbc.M304856200
  • Zhang S, Zhang G, Wan YY. SKI and SMAD4 are essential for IL-21-induced Th17 differentiation. Mol Immunol. 2019;114:260–268. doi:10.1016/j.molimm.2019.07.029
  • Zhang S. Reversing SKI-SMAD4-mediated suppression is essential for T. Nature. 2017;551(7678):105–109. doi:10.1038/nature24283
  • Gu A-D, Zhang S, Wang Y, et al. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling. Immunity. 2015;42(1):68–79. doi:10.1016/j.immuni.2014.12.019
  • Kim D, Lee SM, Jun HS. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice. Immunol Cell Biol. 2017;95(3):287–296. doi:10.1038/icb.2016.98
  • Cao J, Zhang X, Wang Q, et al. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis. 2015;6(11):e1984. doi:10.1038/cddis.2015.337
  • Lewis GM, Wehrens EJ, Labarta-Bajo L, et al. TGF-β receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126(10):3799–3813. doi:10.1172/JCI87041
  • Kim D, Kim JY, Jun HS. Smad4 in T cells plays a protective role in the development of autoimmune Sjogren’s syndrome in the nonobese diabetic mouse. Oncotarget. 2016;7(49):80298–80312. doi:10.18632/oncotarget.13437
  • Abdelaziz MH. Th2 cells as an intermediate for the differentiation of naive T cells into Th9 cells, associated with the Smad3/Smad4 and IRF4 pathway. Exp Ther Med. 2020;19(3):1947–1954. doi:10.3892/etm.2020.8420
  • Inoshita H, Kim B-G, Yamashita M, et al. Disruption of Smad4 expression in T cells leads to IgA nephropathy-like manifestations. PLoS One. 2013;8(11):e78736. doi:10.1371/journal.pone.0078736
  • Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjogren’s syndrome. J Autoimmun. 2010;34(4):400–407. doi:10.1016/j.jaut.2009.10.004
  • Versnel MA. Id3 knockout mice as a new model for sjogren’s syndrome: only a T cell defect or more? Immunity. 2004;21(4):457–458. doi:10.1016/j.immuni.2004.10.003
  • Kim BG, Li C, Qiao W, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature. 2006;441(7096):1015–1019. doi:10.1038/nature04846
  • Wang WQ, Liu L, Xu H-X, et al. Infiltrating immune cells and gene mutations in pancreatic ductal adenocarcinoma. Br J Surg. 2016;103(9):1189–1199. doi:10.1002/bjs.10187
  • Mennonna D, Maccalli C, Romano MC, et al. T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes. Gut. 2017;66(3):454–463. doi:10.1136/gutjnl-2015-309453
  • Jones JB, Kern SE. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4. Nucleic Acids Res. 2000;28(12):2363–2368. doi:10.1093/nar/28.12.2363
  • Caputo V, Bocchinfuso G, Castori M, et al. Novel SMAD4 mutation causing Myhre syndrome. Am J Med Genet A. 2014;164(7):1835–1840. doi:10.1002/ajmg.a.36544
  • Le Goff C, Mahaut C, Abhyankar A, et al. Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet. 2012;44(1):85–U118.
  • Caputo V, Cianetti L, Niceta M, et al. A restricted spectrum of mutations in the SMAD4 tumor-suppressor gene underlies myhre syndrome. Am J Hum Genet. 2012;90(1):161–169. doi:10.1016/j.ajhg.2011.12.011
  • Tram E. Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario site of the breast cancer family registry (CFR). Breast Cancer Res. 2011;13(4).
  • Maliekal TT, Antony M-L, Nair A, et al. Loss of expression, and mutations of Smad 2 and Smad 4 in human cervical cancer. Oncogene. 2003;22(31):4889–4897. doi:10.1038/sj.onc.1206806
  • Xu J, Attisano L. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 2000;97(9):4820–4825. doi:10.1073/pnas.97.9.4820