69
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Clinical Significance of ADAMTS19, BMP7, SIM1, and SFRP1 Promoter Methylation in Renal Clear Cell Carcinoma

, , , , &
Pages 4979-4990 | Published online: 05 Oct 2021

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. doi:10.3322/caac.21442
  • Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 2010;7(5):245–257. doi:10.1038/nrurol.2010.46
  • Capitanio U, Bensalah K, Bex A, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84. doi:10.1016/j.eururo.2018.08.036
  • Dabestani S, Thorstenson A, Lindblad P, Harmenberg U, Ljungberg B, Lundstam S. Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: a Population-Based Study. World J Urol. 2016;34(8):1081–1086. doi:10.1007/s00345-016-1773-y
  • Padala SA, Barsouk A, Thandra KC, et al. Epidemiology of renal cell carcinoma. World J Oncol. 2020;11(3):79–87. doi:10.14740/wjon1279
  • Kattan MW, Reuter V, Motzer RJ, Katz J, Russo P. A postoperative prognostic nomogram for renal cell carcinoma. J Urol. 2001;166(1):63–67. doi:10.1016/S0022-5347(05)66077-6
  • Frank I, Blute ML, Cheville JC, Lohse CM, Weaver AL, Zincke H. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol. 2002;168(6):2395–2400. doi:10.1016/S0022-5347(05)64153-5
  • Zisman A, Pantuck AJ, Dorey F, et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol. 2001;19(6):1649–1657. doi:10.1200/JCO.2001.19.6.1649
  • Wei JH, Haddad A, Wu KJ, et al. A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma. Identification of a five-CpG-based classifier that has added prognostic value to the currently used staging system and risk scores, and could thus be of high clinical value. Nat Commun. 2015;6:8699.
  • Hurtado Del Pozo C, Garreta E, Izpisúa Belmonte JC, Montserrat N. Modeling epigenetic modifications in renal development and disease with organoids and genome editing. Dis Model Mech. 2018;11(11):dmm035048. doi:10.1242/dmm.035048
  • Wu P, Cao Z, Wu S. New progress of epigenetic biomarkers in urological cancer. Dis Markers. 2016;2016:9864047. doi:10.1155/2016/9864047
  • Shenoy N, Vallumsetla N, Zou Y, et al. Role of DNA methylation in renal cell carcinoma. J Hematol Oncol. 2015;8(1):88. doi:10.1186/s13045-015-0180-y
  • Arai E, Kanai Y. Genetic and epigenetic alterations during renal carcinogenesis. Int J Clin Exp Pathol. 2010;4(1):58–73.
  • Minardi D, Lucarini G, Filosa A, et al. Prognostic role of global DNA-methylation and histone acetylation in pT1a clear cell renal carcinoma in partial nephrectomy specimens. J Cell Mol Med. 2009;13(8B):2115–2121. doi:10.1111/j.1582-4934.2008.00482.x
  • Morris MR, Latif F. The epigenetic landscape of renal cancer. Nat Rev Nephrol. 2017;13(1):47–60.
  • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–49. doi:10.1038/nature12222
  • Maleckaite R, Zalimas A, Bakavicius A, Jankevicius F, Jarmalaite S, Daniunaite K. DNA methylation of metallothionein genes is associated with the clinical features of renal cell carcinoma. Oncol Rep. 2019;41(6):3535–3544.
  • Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours, 7th edition. Cancer. 2009;7:310.
  • Lopez-Beltran A, Scarpelli M, Montironi R, Kirkali Z. 2004 WHO classification of the renal tumors of the adults. Eur Urol. 2006;49(5):798–805. doi:10.1016/j.eururo.2005.11.035
  • Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982;6(7):655–663. doi:10.1097/00000478-198210000-00007
  • Delahunt B, Cheville JC, Martignoni G, et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol. 2013;37(10):1490. doi:10.1097/PAS.0b013e318299f0fb
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Patard JJ, Kim HL, Lam JS, et al. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an International Multicenter Study. J Clin Oncol. 2004;22(16):3316–3322. doi:10.1200/JCO.2004.09.104
  • Zigeuner R, Hutterer G, Chromecki T, et al. External validation of the Mayo Clinic stage, size, grade, and necrosis (SSIGN) score for clear-cell renal cell carcinoma in a single European centre applying routine pathology. Eur Urol. 2010;57(1):102–109. doi:10.1016/j.eururo.2008.11.033
  • Ibragimova I, Slifker MJ, Maradeo ME, et al. Genome-wide promoter methylome of small renal masses. PLoS One. 2013;8(10):e77309. doi:10.1371/journal.pone.0077309
  • Kang HW, Park H, Seo SP, et al. Methylation signature for prediction of progression free survival in surgically treated clear cell renal cell carcinoma. J Korean Med Sci. 2019;34(19):e144. doi:10.3346/jkms.2019.34.e144
  • Kim YJ, Jang W, Piao XM, et al. ZNF492 and GPR149 methylation patterns as prognostic markers for clear cell renal cell carcinoma: array-based DNA methylation profiling. Oncol Rep. 2019;42(1):453–460.
  • Yoo KH, Park YK, Kim HS, Jung WW, Chang SG. Epigenetic inactivation of HOXA5 and MSH2 gene in clear cell renal cell carcinoma. Pathol Int. 2010;60(10):661–666. doi:10.1111/j.1440-1827.2010.02578.x
  • Ricketts CJ, Morris MR, Gentle D, et al. Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma. Epigenetics. 2012;7(3):278–290. doi:10.4161/epi.7.3.19103
  • van Vlodrop IJH, Joosten SC, De Meyer T, et al. Four-gene promoter methylation marker panel consisting of GREM1, NEURL, LAD1, and NEFH predicts survival of clear cell renal cell cancer patients. Clin Cancer Res. 2017;23(8):2006–2018. doi:10.1158/1078-0432.CCR-16-1236
  • Dagher J, Delahunt B, Rioux-Leclercq N, et al. Assessment of tumour-associated necrosis provides prognostic information additional to World Health Organization/International Society of Urological Pathology grading for clear cell renal cell carcinoma. Histopathology. 2019;74(2):284–290. doi:10.1111/his.13737
  • Morris MR, Ricketts C, Gentle D, et al. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene. 2010;29(14):2104–2117. doi:10.1038/onc.2009.493
  • Ricketts CJ, Hill VK, Linehan WM. Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA kidney renal clear cell carcinoma (KIRC) project. PLoS One. 2014;9(1):e85621. doi:10.1371/journal.pone.0085621
  • van Vlodrop IJ, Niessen HE, Derks S, et al. Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin Cancer Res. 2011;17(13):4225–4231. doi:10.1158/1078-0432.CCR-10-3394
  • Turajlic S, Xu H, Litchfield K, et al. Deterministic evolutionary trajectories influence primary tumor growth: tRACERx renal. Cell. 2018;173(3):595–610. doi:10.1016/j.cell.2018.03.043
  • Brooks SA, Brannon AR, Parker JS, et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol. 2014;66(1):77–84. doi:10.1016/j.eururo.2014.02.035
  • Rini B, Goddard A, Knezevic D, et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol. 2015;16(6):676–685. doi:10.1016/S1470-2045(15)70167-1
  • Cal S, López-Otín C. ADAMTS proteases and cancer. Matrix Biol. 2015;44–46:77–85. doi:10.1016/j.matbio.2015.01.013
  • Hubmacher D, Apte SS. Genetic and functional linkage between ADAMTS superfamily proteins and fibrillin-1: a novel mechanism influencing microfibril assembly and function. Cell Mol Life Sci. 2011;68(19):3137–3148. doi:10.1007/s00018-011-0780-9
  • Zeisberg M. Bone morphogenic protein-7 and the kidney: current concepts and open questions. Nephrol Dial Transplant. 2006;21(3):568–573. doi:10.1093/ndt/gfk010
  • Gregory KE, Ono RN, Charbonneau NL, et al. The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem. 2005;280(30):27970–27980. doi:10.1074/jbc.M504270200
  • Wang Z, Zhao J, Zhang J, Wei J, Huang Y, Huang Y. Protective effect of BMP-7 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicol. Lett. 2010;198(3):348–357. doi:10.1016/j.toxlet.2010.07.018
  • Gould SE, Day M, Jones SS, Dorai H. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int. 2002;61(1):51–60. doi:10.1046/j.1523-1755.2002.00103.x
  • Basic-Jukic N, Hudolin T, Radic-Antolic M, et al. Bone morphogenetic protein-7 expression is down-regulated in human clear cell renal carcinoma. J Nephrol. 2011;24(1):91–97. doi:10.5301/JN.2010.2020
  • Pantuck AJ, An J, Liu H, Rettig MB. NF-κB–dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel-Lindau inactivation in renal cell carcinomas. Cancer Res. 2010;70(2):752–761. doi:10.1158/0008-5472.CAN-09-2211
  • Markić D, Celić T, Spanjol J, Grsković A, Bobinac D, Fuckar Z. Expression of bone morphogenetic protein-7, its receptors and Smad1/5/8 in normal human kidney and renal cell cancer. Coll Antropol. 2010;34(Suppl 2):149–153.
  • Mo S, Su Z, Heng B, et al. SFRP1 promoter methylation and renal carcinoma risk: a systematic review and meta-analysis. J Nippon Med Sch. 2018;85(2):78–86. doi:10.1272/jnms.2018_85-13
  • Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J. 2012;31(12):2714–2736. doi:10.1038/emboj.2012.150
  • Atschekzei F, Hennenlotter J, Janisch S, et al. SFRP1 CpG island methylation locus is associated with renal cell cancer susceptibility and disease recurrence. Epigenetics. 2012;7(5):447–457. doi:10.4161/epi.19614
  • Michaud JL, Rosenquist T, May NR, Fan CM. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev. 1998;12:3264–3275. doi:10.1101/gad.12.20.3264
  • Kim MJ, Oksenberg N, Hoffmann TJ, Vaisse C, Ahituv N. Functional characterization of SIM1-associated enhancers. Hum Mol Genet. 2014;23(7):1700–1708. doi:10.1093/hmg/ddt559
  • Sidaway P. Kidney cancer: methylation of obesity-related genes is associated with prognosis. Nat Rev Urol. 2017;14(8):452. doi:10.1038/nrurol.2017.94
  • Faryna M, Konermann C, Aulmann S, et al. Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB J. 2012;26(12):4937–4950. doi:10.1096/fj.12-209502
  • Daugaard I, Dominguez D, Kjeldsen TE, et al. Identification and validation of candidate epigenetic biomarkers in lung adenocarcinoma. Sci Rep. 2016;6(1):35807. doi:10.1038/srep35807
  • Kim HJ, Kim CY, Jin J, et al. Aberrant single-minded homolog 1 methylation as a potential biomarker for cervical cancer. Diagn Cytopathol. 2018;46(1):15–21. doi:10.1002/dc.23838
  • Sauerbrei W, Taube SE, McShane LM, Cavenagh MM, Altman DG. Reporting recommendations for tumor marker prognostic studies (REMARK): an abridged explanation and elaboration. J Natl Cancer Inst. 2018;110(8):803–811. doi:10.1093/jnci/djy088