82
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Role and Mechanism of the Histone Methyltransferase G9a in Tumors: Update

, , & ORCID Icon
Pages 449-462 | Received 13 Jan 2024, Accepted 30 Apr 2024, Published online: 30 May 2024

References

  • Friedrich MJ. Epigenetic therapies offer new approach to fighting cancer at the genetic level. JAMA. 2010;303(3):213–214. doi:10.1001/jama.2009.1914
  • Darwiche N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair. Am J Cancer Res. 2020;10(7):1954–1978.
  • Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27. doi:10.1016/j.cell.2012.06.013
  • Zhang FL, Li DQ. Targeting chromatin-remodeling factors in cancer cells: promising molecules in cancer therapy. Int J Mol Sci. 2022;23(21). doi:10.3390/ijms232112815
  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–260. doi:10.1038/38444
  • Rice JC, Briggs SD, Ueberheide B, et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell. 2003;12(6):1591–1598. doi:10.1016/s1097-2765(03)00479-9
  • Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17(10):630–641. doi:10.1038/nrg.2016.93
  • Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol. 2020;17(2):75–90. doi:10.1038/s41571-019-0266-5
  • Han P, Chang CP. Long non-coding RNA and chromatin remodeling. RNA Biol. 2015;12(10):1094–1098. doi:10.1080/15476286.2015.1063770
  • Roy L, Chatterjee O, Bose D, Roy A, Chatterjee S. Noncoding RNA as an influential epigenetic modulator with promising roles in cancer therapeutics. Drug Discov Today. 2023;28(9):103690. doi:10.1016/j.drudis.2023.103690
  • Nikolova E, Laleva L, Milev M, et al. miRNAs and related genetic biomarkers according to the WHO glioma classification: from diagnosis to future therapeutic targets. Noncoding RNA Res. 2024;9(1):141–152. doi:10.1016/j.ncrna.2023.10.003
  • De Majo F, Calore M. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart. Noncoding RNA Res. 2018;3(1):20–28. doi:10.1016/j.ncrna.2018.02.003
  • Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632–4642. doi:10.1200/jco.2004.07.151
  • Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17(3):330–339. doi:10.1038/nm.2305
  • Iglesias N, Currie MA, Jih G, et al. Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability. Nature. 2018;560(7719):504–508. doi:10.1038/s41586-018-0398-2
  • Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 2011;25(8):781–788. doi:10.1101/gad.2027411
  • Tachibana M, Sugimoto K, Nozaki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002;16(14):1779–1791. doi:10.1101/gad.989402
  • Hou QQ, Xiao Q, Sun XY, Ju XC, Luo ZG. TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a. Sci Adv. 2021;7(3). doi:10.1126/sciadv.aba8053
  • Ivanov DP, Coyle B, Walker DA, Grabowska AM. In vitro models of medulloblastoma: choosing the right tool for the job. J Biotechnol. 2016;236:10–25. doi:10.1016/j.jbiotec.2016.07.028
  • Souza BK, Freire NH, Jaeger M, et al. G9a/EHMT2 is a potential prognostic biomarker and molecular target in SHH medulloblastoma. Neuromolecular Med. 2022;24(4):392–398. doi:10.1007/s12017-022-08702-5
  • Nguekeu-Zebaze L, Hanini N, Noll A, et al. PARP3 supervises G9a-mediated repression of adhesion and hypoxia-responsive genes in glioblastoma cells. Sci Rep. 2022;12(1):15534. doi:10.1038/s41598-022-19525-6
  • Cao Y, Liu B, Cai L, et al. G9a promotes immune suppression by targeting the Fbxw7/Notch pathway in glioma stem cells. CNS Neurosci Ther. 2023. doi:10.1111/cns.14191
  • Sun T, Zhang K, Pangeni RP, et al. G9a promotes invasion and metastasis of non-small cell lung cancer through enhancing focal adhesion kinase activation via NF-κB signaling pathway. Mol Cancer Res. 2021;19(3):429–440. doi:10.1158/1541-7786.Mcr-20-0557
  • Pribluda A, Daemen A, Lima AN, et al. EHMT2 methyltransferase governs cell identity in the lung and is required for KRAS (G12D) tumor development and propagation. Elife. 2022;11. doi:10.7554/eLife.57648
  • Zhang L, Liang B, Xu H, et al. Cinobufagin induces FOXO1-regulated apoptosis, proliferation, migration, and invasion by inhibiting G9a in non-small-cell lung cancer A549 cells. J Ethnopharmacol. 2022;291:115095. doi:10.1016/j.jep.2022.115095
  • Li Y, Chen Z, Cao K, et al. G9a regulates cell sensitivity to radiotherapy via histone H3 lysine 9 trimethylation and CCDC8 in lung cancer. Onco Targets Ther. 2021;14:3721–3728. doi:10.2147/ott.S296937
  • Nagaraja SS, Subramanian U, Nagarajan D. Radiation-induced H3K9 methylation on E-cadherin promoter mediated by ROS/Snail axis: role of G9a signaling during lung epithelial-mesenchymal transition. Toxicol In Vitro. 2021;70:105037. doi:10.1016/j.tiv.2020.105037
  • Wang W, Wang J, Liu S, et al. An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer. Mol Cancer. 2022;21(1):106. doi:10.1186/s12943-022-01579-9
  • Wang H, Song Z, Xie E, et al. Targeting the LSD1-G9a-ER stress pathway as a novel therapeutic strategy for esophageal squamous cell carcinoma. Research. 2022;2022:9814652. doi:10.34133/2022/9814652
  • Lee SH, Hyeon DY, Yoon SH, et al. RUNX3 methylation drives hypoxia-induced cell proliferation and antiapoptosis in early tumorigenesis. Cell Death Differ. 2021;28(4):1251–1269. doi:10.1038/s41418-020-00647-1
  • Kim TW. Cinnamaldehyde induces autophagy-mediated cell death through ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol Sin. 2022;43(3):712–723. doi:10.1038/s41401-021-00672-x
  • Zong-yan W, Sha D. The expression of SPINK1 and G9a in gastric cancer and their prognostic value. PLA Med J. 2020;32(1):38–42. doi:10.3969/j.issn.2095-140X.2020.01.008
  • Wang L, Chen J, Zuo Q, et al. Calreticulin enhances gastric cancer metastasis by dimethylating H3K9 in the E-cadherin promoter region mediating by G9a. Oncogenesis. 2022;11(1):29. doi:10.1038/s41389-022-00405-7
  • Yuan LT, Lee WJ, Yang YC, et al. Histone methyltransferase g9a-promoted progression of hepatocellular carcinoma is targeted by liver-specific Hsa-miR-122. Cancers. 2021;13(10). doi:10.3390/cancers13102376
  • Nakatsuka T, Tateishi K, Kato H, et al. Inhibition of histone methyltransferase G9a attenuates liver cancer initiation by sensitizing DNA-damaged hepatocytes to p53-induced apoptosis. Cell Death Dis. 2021;12(1):99. doi:10.1038/s41419-020-03381-1
  • Xia S, Wu J, Zhou W, et al. SLC7A2 deficiency promotes hepatocellular carcinoma progression by enhancing recruitment of myeloid-derived suppressors cells. Cell Death Dis. 2021;12(6):570. doi:10.1038/s41419-021-03853-y
  • Bo K. The Relationship and Clinical Significance Between G9a and Malignant Biological Characteristics of Liver Cancer. Fujian Medical University; 2017.
  • Thng DKH, Hooi L, Toh CCM, et al. Histone-lysine N-methyltransferase EHMT2 (G9a) inhibition mitigates tumorigenicity in Myc-driven liver cancer. Mol Oncol. 2023. doi:10.1002/1878-0261.13417
  • Clavería-Cabello A, Herranz JM, Latasa MU, et al. Identification and experimental validation of druggable epigenetic targets in hepatoblastoma. J Hepatol. 2023;79(4):989–1005. doi:10.1016/j.jhep.2023.05.031
  • Zhang J, Chen W, Ma W, et al. Epigenetic silencing of 15-hydroxyprostaglandin dehydrogenase by histone methyltransferase EHMT2/G9a in cholangiocarcinoma. Mol Cancer Res. 2022;20(3):350–360. doi:10.1158/1541-7786.Mcr-21-0536
  • Colyn L, Alvarez-Sola G, Latasa MU, et al. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. J Exp Clin Cancer Res. 2022;41(1):183. doi:10.1186/s13046-022-02386-2
  • Huang H, Li H, Zhao T, et al. TSPAN1-elevated FAM110A promotes pancreatic cancer progression by transcriptionally regulating HIST1H2BK. J Cancer. 2022;13(3):906–917. doi:10.7150/jca.66404
  • Bergin CJ, Zouggar A, Haebe JR, et al. G9a controls pluripotent-like identity and tumor-initiating function in human colorectal cancer. Oncogene. 2021;40(6):1191–1202. doi:10.1038/s41388-020-01591-7
  • Mare M, Colarossi L, Veschi V, et al. Cancer stem cell biomarkers predictive of radiotherapy response in rectal cancer: a systematic review. Genes. 2021;12(10). doi:10.3390/genes12101502
  • Gimeno-Valiente F, Riffo-Campos Á L, Torres L, et al. Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer. Cancers. 2021;13(6). doi:10.3390/cancers13061433
  • Ichikawa Y, Takahashi H, Chinen Y, et al. Low G9a expression is a tumor progression factor of colorectal cancer via IL-8 promotion. Carcinogenesis. 2022;43(8):797–807. doi:10.1093/carcin/bgac050
  • Liu S, Jiang Y, Yang H, et al. BIX-01294 enhances the effect of chemotherapy on colorectal cancer by inhibiting the expression of stemness genes. Biochem Biophys Res Commun. 2022;590:169–176. doi:10.1016/j.bbrc.2021.12.089
  • Ryu TY, Kim K, Han TS, et al. Human gut-microbiome-derived propionate coordinates proteasomal degradation via HECTD2 upregulation to target EHMT2 in colorectal cancer. Isme j. 2022;16(5):1205–1221. doi:10.1038/s41396-021-01119-1
  • Tu WB, Shiah YJ, Lourenco C, et al. MYC interacts with the G9a histone methyltransferase to drive transcriptional repression and tumorigenesis. Cancer Cell. 2018;34(4):579–595.e8. doi:10.1016/j.ccell.2018.09.001
  • Ali A, Shafarin J, Unnikannan H, et al. Co-targeting BET bromodomain BRD4 and RAC1 suppresses growth, stemness and tumorigenesis by disrupting the c-MYC-G9a-FTH1axis and downregulating HDAC1 in molecular subtypes of breast cancer. Int J Biol Sci. 2021;17(15):4474–4492. doi:10.7150/ijbs.62236
  • Ali A, Shafarin J, Abu Jabal R, et al. Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast cancer cells by inhibiting the expression of c-MYC. FEBS Open Bio. 2021;11(11):3101–3114. doi:10.1002/2211-5463.13303
  • Jin Y, Park S, Park SY, et al. G9a knockdown suppresses cancer aggressiveness by facilitating smad protein phosphorylation through increasing BMP5 expression in luminal A type breast cancer. Int J Mol Sci. 2022;23(2). doi:10.3390/ijms23020589
  • Aftab S, Shakoori AR. Glucose deprivation promotes cancer cell invasion by varied expression of EMT structural proteins and regulatory molecules in MDA-MB-231 triple-negative breast cancer cells. Crit Rev Eukaryot Gene Expr. 2022;33(1):53–66. doi:10.1615/CritRevEukaryotGeneExpr.2022044483
  • Spiliopoulou P, Spear S, Mirza H, et al. Dual G9A/EZH2 inhibition stimulates antitumor immune response in ovarian high-grade serous carcinoma. Mol Cancer Ther. 2022;21(4):522–534. doi:10.1158/1535-7163.Mct-21-0743
  • Fong KW, Zhao JC, Lu X, et al. PALI1 promotes tumor growth through competitive recruitment of PRC2 to G9A-target chromatin for dual epigenetic silencing. Mol Cell. 2022;82(24):4611–4626.e7. doi:10.1016/j.molcel.2022.11.010
  • Zhang J, Gao K, Xie H, et al. SPOP mutation induces DNA methylation via stabilizing GLP/G9a. Nat Commun. 2021;12(1):5716. doi:10.1038/s41467-021-25951-3
  • Huang ZC, Huang J, Huang CK, Hou Y, Zhu B. Euchromatic histone lysine methyltransferase 2 facilitates radioresistance in prostate cancer by repressing endoplasmic reticulum protein 29 transcription. Kaohsiung J Med Sci. 2023;39(6):576–586. doi:10.1002/kjm2.12661
  • Li RG, Deng H, Liu XH, Chen ZY, Wan SS, Wang L. Histone methyltransferase G9a promotes the development of renal cancer through epigenetic silencing of tumor suppressor gene SPINK5. Oxid Med Cell Longev. 2021;2021:6650781. doi:10.1155/2021/6650781
  • Hansen AM, Ge Y, Schuster MB, et al. H3K9 dimethylation safeguards cancer cells against activation of the interferon pathway. Sci Adv. 2022;8(11):eabf8627. doi:10.1126/sciadv.abf8627
  • Gouda MBY, Zidane MA, Abdelhady AS, Hassan NM. Expression and prognostic significance of chromatin modulators EHMT2/G9a and KDM2b in acute myeloid leukemia. J Cell Biochem. 2022;123(8):1340–1355. doi:10.1002/jcb.30297
  • Montanaro A, Kitara S, Cerretani E, et al. Identification of an Epi-metabolic dependency on EHMT2/G9a in T-cell acute lymphoblastic leukemia. Cell Death Dis. 2022;13(6):551. doi:10.1038/s41419-022-05002-5
  • Zhou M, Zhang X, Liu C, et al. Targeting protein lysine methyltransferase G9A impairs self-renewal of chronic myelogenous leukemia stem cells via upregulation of SOX6. Oncogene. 2021;40(20):3564–3577. doi:10.1038/s41388-021-01799-1
  • De Smedt E, Devin J, Muylaert C, et al. G9a/GLP targeting in MM promotes autophagy-associated apoptosis and boosts proteasome inhibitor-mediated cell death. Blood Adv. 2021;5(9):2325–2338. doi:10.1182/bloodadvances.2020003217
  • Ishiguro K, Kitajima H, Niinuma T, et al. Dual EZH2 and G9a inhibition suppresses multiple myeloma cell proliferation by regulating the interferon signal and IRF4-MYC axis. Cell Death Discov. 2021;7(1):7. doi:10.1038/s41420-020-00400-0
  • Wang J, Xu H, Ge S, et al. EHMT2 (G9a) activation in mantle cell lymphoma and its associated DNA methylation and gene expression. Cancer Biol Med. 2021;19(6):836–849. doi:10.20892/j.issn.2095-3941.2020.0371
  • Fan Y, Fan X, Yan H, et al. Long non-coding ROR promotes the progression of papillary thyroid carcinoma through regulation of the TESC/ALDH1A1/TUBB3/PTEN axis. Cell Death Dis. 2022;13(2):157. doi:10.1038/s41419-021-04210-9
  • Shrestha R, Mohankumar K, Jin UH, Martin G, Safe S. The histone methyltransferase gene G9A is regulated by nuclear receptor 4A1 in alveolar rhabdomyosarcoma cells. Mol Cancer Ther. 2021;20(3):612–622. doi:10.1158/1535-7163.Mct-20-0474
  • Gualtieri A, Bianconi V, Renzini A, Pieroni L, Licursi V, Mozzetta C. The RNA helicase DDX5 cooperates with EHMT2 to sustain alveolar rhabdomyosarcoma growth. Cell Rep. 2022;40(9):111267. doi:10.1016/j.celrep.2022.111267
  • Karthik N, Lee JJH, Soon JLJ, et al. Histone variant H3.3 promotes metastasis in alveolar rhabdomyosarcoma. J Pathol. 2023;259(3):342–356. doi:10.1002/path.6048
  • García-Domínguez DJ, Hajji N, López-Alemany R, et al. Selective histone methyltransferase G9a inhibition reduces metastatic development of Ewing sarcoma through the epigenetic regulation of NEU1. Oncogene. 2022;41(18):2638–2650. doi:10.1038/s41388-022-02279-w
  • Zhang M, Wang G, Ma Z, et al. BET inhibition triggers antitumor immunity by enhancing MHC class I expression in head and neck squamous cell carcinoma. Mol Ther. 2022;30(11):3394–3413. doi:10.1016/j.ymthe.2022.07.022
  • Sun S, Su G, Zheng X. Inhibition of the tumor suppressor gene SPINK5 via EHMT2 induces the oral squamous cell carcinoma development. Mol Biotechnol. 2023. doi:10.1007/s12033-023-00740-z
  • Kato S, Weng QY, Insco ML, et al. Gain-of-function genetic alterations of G9a drive oncogenesis. Cancer Discov. 2020;10(7):980–997. doi:10.1158/2159-8290.Cd-19-0532
  • Zhang Z, Eberhard DA, Frantz GD, et al. GEPIS--quantitative gene expression profiling in normal and cancer tissue. Bioinformatics. 2004;20(15):2390–2398. doi:10.1093/bioinformatics/bth256
  • Recalde M, Gárate-Rascón M, Elizalde M, et al. The splicing regulator SLU7 is required to preserve DNMT1 protein stability and DNA methylation. Nucleic Acids Res. 2021;49(15):8592–8609. doi:10.1093/nar/gkab649
  • Vienot A, Pallandre JR, Renaude E, et al. Chemokine switch regulated by TGF-β1 in cancer-associated fibroblast subsets determines the efficacy of chemo-immunotherapy. Oncoimmunology. 2022;11(1):2144669. doi:10.1080/2162402x.2022.2144669
  • Mu YR, Zou SY, Li M, et al. Role and mechanism of FOXG1-related epigenetic modifications in cisplatin-induced hair cell damage. Front Mol Neurosci. 2023;16:1064579. doi:10.3389/fnmol.2023.1064579
  • Fu J, Yu M, Xu W, Yu S. High expression of G9a induces cisplatin resistance in hepatocellular carcinoma. Cell J. 2023;25(2):118–125. doi:10.22074/cellj.2022.557564.1077
  • Tang Z, Chenwei L, Kang B, Gao G, Cheng L, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Research. 2017;45(W1):W98–W102. doi: 10.1093/nar/gkx247
  • Garcia-Gomez A, Li T, de la Calle-Fabregat C, et al. Targeting aberrant DNA methylation in mesenchymal stromal cells as a treatment for myeloma bone disease. Nat Commun. 2021;12(1):421. doi:10.1038/s41467-020-20715-x
  • San José-Enériz E, Agirre X, Rabal O, et al. Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nat Commun. 2017;8:15424. doi:10.1038/ncomms15424
  • Colyn L, Bárcena-Varela M, Álvarez-Sola G, et al. Dual Targeting of G9a and DNA Methyltransferase-1 for the Treatment of Experimental Cholangiocarcinoma. Hepatology. 2021;73(6):2380–2396. doi:10.1002/hep.31642
  • Canale M, Casadei-Gardini A, Ulivi P, et al. Epigenetic mechanisms in gastric cancer: potential new therapeutic opportunities. Int J Mol Sci. 2020;21(15). doi:10.3390/ijms21155500
  • Casciello F, Kelly GM, Ramarao-Milne P, et al. Combined inhibition of G9a and EZH2 suppresses tumor growth via synergistic induction of IL24-mediated apoptosis. Cancer Res. 2022;82(7):1208–1221. doi:10.1158/0008-5472.Can-21-2218
  • Kelly GM, Al-Ejeh F, McCuaig R, et al. G9a Inhibition Enhances Checkpoint Inhibitor Blockade Response in Melanoma. Clin Cancer Res. 2021;27(9):2624–2635. doi:10.1158/1078-0432.Ccr-20-3463
  • De Beck L, Awad RM, Basso V, et al. Inhibiting histone and DNA methylation improves cancer vaccination in an experimental model of melanoma. Front Immunol. 2022;13:799636. doi:10.3389/fimmu.2022.799636
  • Jana A, Naga R, Saha S, Banerjee DR. 3D QSAR pharmacophore based lead identification of G9a lysine methyltransferase towards epigenetic therapeutics. J Biomol Struct Dyn. 2022;1–19. doi:10.1080/07391102.2022.2135600
  • Segovia C, San José-Enériz E, Munera-Maravilla E, et al. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med. 2019;25(7):1073–1081. doi:10.1038/s41591-019-0499-y
  • Scheer S, Zaph C. The lysine methyltransferase G9a in immune cell differentiation and function. Front Immunol. 2017;8:429. doi:10.3389/fimmu.2017.00429
  • Cao H, Li L, Yang D, et al. Recent progress in histone methyltransferase (G9a) inhibitors as anticancer agents. Eur J Med Chem. 2019;179:537–546. doi:10.1016/j.ejmech.2019.06.072