46
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Red Sea Sponge Callyspongia siphonella Extract Induced Growth Inhibition and Apoptosis in Breast MCF-7 and Hepatic HepG-2 Cancer Cell Lines in 2D and 3D Cell Cultures

ORCID Icon, , , , , ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 521-536 | Received 22 Apr 2024, Accepted 19 Jun 2024, Published online: 25 Jun 2024

References

  • Metwally S, El-Naggar AA, El-Damhougy HA, Bashar KAE, Ashour M, Abo-Taleb AH. GC-MS analysis of bioactive components in six different crude extracts from the soft coral (Sinularia maxim) collected from Ras Mohamed, Aqaba Gulf, Red Sea, Egypt. Egypt J Aquatic Biol Fish. 2020;24(6):425–434. doi:10.21608/ejabf.2020.114293
  • DiBattista JD, Roberts MB, Bouwmeester J, et al. A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeograph. 2016;43(3):423–439. doi:10.1111/jbi.12649
  • Berumen ML, Hoey AS, Bass WH, et al. The status of coral reef ecology research in the Red Sea. Coral Reefs. 2013;32(3):737–748. doi:10.1007/s00338-013-1055-8
  • I Weinstein IB, Case K. The history of cancer research: introducing an AACR centennial series. Cancer Res. 2008;68(17):6861–6862. doi:10.1158/0008-5472.CAN-08-2827
  • Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339–348. doi:10.15171/apb.2017.041
  • Kijjoa A, Sawangwong P. Drugs and Cosmetics from the Sea. Mar Drugs. 2004;2(2):73–82. doi:10.3390/md202073
  • Andréfouët S, Costello MJ, Rast M, Sathyendranath S. Earth observations for marine and coastal biodiversity and ecosystems. Remo Sens Enviro. 2008;112(8):3297–3299. doi:10.1016/j.rse.2008.04.006
  • Sithranga Boopathy N, Kathiresan K. Anticancer drugs from marine flora: an overview. J Oncol. 2010;2010:1–18. doi:10.1155/2010/214186
  • Khalifa SAM, Elias N, Farag MA, et al. Marine natural products: a source of novel anticancer drugs. Mar Drugs. 2019;17(9):491. doi:10.3390/md17090491
  • Rady HM, Hassan AZ, Salem SM, et al. Induction of apoptosis and cell cycle arrest by negombata magnifica sponge in hepatocellular carcinoma. Med Chem Res. 2016;25(3):456–465. doi:10.1007/s00044-015-1491-9
  • Mioso R, Marante F, Bezerra R, Borges F, Santos B, Laguna I. Cytotoxic compounds derived from marine sponges. a review (2010–2012). Molecules. 2017;22(2):208. doi:10.3390/molecules22020208
  • Costantini S, Romano G, Rusolo F, et al. Anti-inflammatory effects of a methanol extract from the marine sponge geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflammation. 2015;2015:1–9. doi:10.1155/2015/204975
  • Choi C, Son A, Lee H-S, Lee Y-J, Park HC. Radiosensitization by marine sponge agelas sp. extracts in hepatocellular carcinoma cells with autophagy induction. Sci Rep. 2018;8(1):6317. doi:10.1038/s41598-018-24745-w
  • Elbandy M. Anti-inflammatory effects of marine bioactive compounds and their potential as functional food ingredients in the prevention and treatment of neuroinflammatory disorders. Molecules. 2022;28(1):2. doi:10.3390/molecules28010002
  • lbusutil L, García-Hernández MR, Díaz MC, Pomponi SA. Mesophotic sponges of the genus callyspongia (Demospongiae, Haplosclerida) from Cuba, with the description of two new species. Zootaxa. 2018;4466(1). doi:10.11646/zootaxa.4466.1.9
  • Petronelli A, Pannitteri G, Testa U. Triterpenoids as new promising anticancer drugs. Anti-Cancer Drugs. 2009;20(10):880–892. doi:10.1097/CAD.0b013e328330fd90
  • Laszczyk M. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta med. 2009;75(15):1549–1560. doi:10.1055/s-0029-1186102
  • Al-Massarani S, El-Gamal A, Al-Said M, et al. Studies on the red sea sponge haliclona sp. for its chemical and cytotoxic properties. Pharmacogn Mag. 2016;12(46):114. doi:10.4103/0973-1296.177906
  • Sobahi TA, Ayyad S-E, Abdel-Lateff A, Algandaby M, Alorfi H, Abdel-Naim A. Cytotoxic metabolites from Callyspongia siphonella display antiproliferative activity by inducing apoptosis in HCT-116 cells. Pharmacogn Mag. 2017;13(49):37. doi:10.4103/0973-1296.203970
  • Jain S, Laphookhieo S, Shi Z, et al. Reversal of P-glycoprotein-mediated multidrug resistance by sipholane triterpenoids. J Natural Prod. 2007;70(6):928–931. doi:10.1021/np0605889
  • Shi Z, Jain S, Kim I, et al. Sipholenol A, a marine‐derived sipholane triterpene, potently reverses P‐glycoprotein (ABCB1)‐mediated multidrug resistance in cancer cells. Cancer Sci. 2007;98(9):1373–1380. doi:10.1111/j.1349-7006.2007.00554.x
  • Jain S, Abraham I, Carvalho P, et al. Sipholane triterpenoids: chemistry, reversal of ABCB1/P-glycoprotein-mediated multidrug resistance, and pharmacophore modeling. J Natural Prod. 2009;72(7):1291–1298. doi:10.1021/np900091y
  • Abraham I, Jain S, Wu C-P, et al. Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Biochem Pharmacol. 2010;80(10):1497–1506. doi:10.1016/j.bcp.2010.08.001
  • Ayyad S-EN, Angawy R, Alarif S, A. E, Badria FA. Cytotoxic polyacetylenes from the red sea sponge siphonochalina siphonella. Zeitschrift Für Naturforschung C. 2014;69(3–4):117–123. doi:10.5560/znc.2013-0088
  • Ayyad S-E, Angawi R, Saqer E, Abdel-Lateff A, Badria F. Cytotoxic neviotane triterpene-type from the red sea sponge Siphonochalina siphonella. Pharmacogn Mag. 2014;10(38):334. doi:10.4103/0973-1296.133292
  • Al-Massarani S, El-Gamal A, Al-Said M, Al-Lihaibi S, Basoudan O. in vitro cytotoxic, antibacterial and antiviral activities of triterpenes from the red sea sponge. Siphono J Pharma Res. 2015;14(1):33. doi:10.4314/tjpr.v14i1.6
  • Abdel-Lateff A, Al-Abd AM, Alahdal AM, et al. Antiproliferative effects of triterpenoidal derivatives, obtained from the marine sponge Siphonochalina sp. on human hepatic and colorectal cancer cells. Zeitschrift Für Naturforschung C. 2016;71(1–2):29–35. doi:10.1515/znc-2015-0160
  • Amina M, Ali M, Al-Musayeib S, M. N, Al-Lohedan HA. Biophysical characterization of the interaction of bovine serum albumin with anticancer sipholane triterpenoid from the Red Sea sponge. J Mol Liq. 2016;220:931–938. doi:10.1016/j.molliq.2016.05.013
  • Ali M, Amina S, Al‐Lohedan M, A. H, Al Musayeib NM. Elucidation of the interaction of human serum albumin with anti‐cancer sipholane triterpenoid from the red sea sponge. Luminescence. 2017;32(2):223–230. doi:10.1002/bio.3172
  • Kapojos MM, Abdjul DB, Yamazaki H, et al. Callyspongiamides A and B, sterol O-acyltransferase inhibitors, from the Indonesian marine sponge Callyspongia sp. Bioorg Med Chem Lett. 2018;28(10):1911–1914. doi:10.1016/j.bmcl.2018.03.077
  • El-Hawary SS, Sayed AM, Mohammed R, et al. Bioactive brominated oxindole alkaloids from the red sea sponge callyspongia siphonella. Mar Drugs. 2019;17(8):465. doi:10.3390/md17080465
  • Ibrahim HAH, El-Naggar HA, El-Damhougy KA, Bashar MAE, Abou Senna FM. Callyspongia crassa and C. siphonella (Porifera, Callyspongiidae) as a potential source for medical bioactive substances, Aqaba Gulf, Red Sea, Egypt. J Basic Appl Zool. 2017;78(1):7. doi:10.1186/s41936-017-0011-5
  • Bernhard D, Tinhofer I, Tonko M, et al. Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ. 2000;7(9):834–842. doi:10.1038/sj.cdd.4400719
  • Rapaport E. Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. J Cell Physiol. 1983;114(3):279–283. doi:10.1002/jcp.1041140305
  • El-Naggar HA, Bashar MAE, Rady I, et al. Two red sea sponge extracts (negombata magnifica and callyspongia siphonella) induced anticancer and antimicrobial activity. Appl Sci. 2022;12(3):1400. doi:10.3390/app12031400
  • El-Hawary SS, Sayed AM, Mohammed R, et al. Bioactive brominated oxindole alkaloids from the red sea sponge. Cally Sipho Mar Drugs. 2019;17(8):465. doi:10.3390/md17080465
  • Yang H, Dai G, Wang S, et al. Inhibition of the proliferation, migration, and invasion of human breast cancer cells by leucine aminopeptidase 3 inhibitors derived from natural marine products. Anti-Can Drug. 2020;31(1):60–66. doi:10.1097/CAD.0000000000000842
  • Mudit M, El Sayed KA. Cancer control potential of marine natural product scaffolds through inhibition of tumor cell migration and invasion. Drug Discovery Today. 2016;21(11):1745–1760. doi:10.1016/j.drudis.2016.06.032
  • Fakhri S, Abdian S, Moradi SZ, Delgadillo BE, Fimognari C, Bishayee A. Marine compounds, mitochondria, and malignancy: a therapeutic nexus. Mar Drugs. 2022;20:625. doi:10.3390/md20100625
  • Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FDP. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230(1):16–26. doi:10.1002/jcp.24683
  • Sweeney EE, McDaniel RE, Maximov PY, Fan P, Jordan VC. Models and mechanisms of acquired antihormone resistance in breast cancer: significant clinical progress despite limitations. Hormone Mol Biol Clin Invest. 2012;9(2):143–163. doi:10.1515/hmbci-2011-0004
  • Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP repo. 2022;4(6):100479. doi:10.1016/j.jhepr.2022.100479