204
Views
14
CrossRef citations to date
0
Altmetric
Review

Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes

, , , &
Pages 9-26 | Published online: 12 Jul 2019

References

  • Donnelly O, Harrington K, Melcher A, Pandha H. Live viruses to treat cancer. J R Soc Med. 2013;106(8):310–314. doi:10.1177/014107681349419623824333
  • Altinoz MA, Guloksuz S, Elmaci I. Rabies virus vaccine as an immune adjuvant against cancers and glioblastoma: new studies may resurrect a neglected potential. Clin Transl Oncol. 2017;19(7):785–792. doi:10.1007/s12094-017-1613-628093702
  • Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15(4):651–659. doi:10.1038/sj.mt.630010817299401
  • Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14(8):559–567. doi:10.1038/nrc377024990523
  • Liu TC, Kirn D. Systemic efficacy with oncolytic virus therapeutics: clinical proof-of-concept and future directions. Cancer Res. 2007;67(2):429–432. doi:10.1158/0008-5472.CAN-06-287117234747
  • Dolgin E. Oncolytic viruses get a boost with first FDA-approval recommendation. Nat Rev Drug Discov. 2015;14(6):369–371. doi:10.1038/nrd464326027526
  • Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother. 2018;14(4):839–846. doi:10.1080/21645515.2017.141289629420123
  • International Committee on Taxonomy of Viruses. Virus taxonomy: 2018 release. Available from: https://talk.ictvonline.org/taxonomy/. Accessed 21, 2019.
  • Coombs KM. Reovirus Structure and Morphogenesis. In: Polly Roy, ed. Reoviruses: Entry, Assembly and Morphogenesis. Berlin-Heidelberg, Germany: Springer-Verlag; 2006: 117–167. doi:10.1007/3-540-30773-7
  • Stevenson A, Chandranesan J. Reoviruses. In: Wallace MR, eds. Drugs and Diseases, Infectious Diseases Medscape eMedicine; 2017 Available from: https://emedicine.medscape.com/article/227348-overview. Accessed February 1, 2019.
  • Nibert LM., Structure of Mammalian Reovirus particles. In: Kenneth KL, Oldstone MBA, eds. Reoviruses I, Structure, Proteins, and Geneticsc (Current Topics in Microbiology and Immunology). Vol. 1 Berlin-Heidelberg, Germany: Springer; 1998:1–30. doi:10.1007/978-3-642-72092-5
  • Mohamed A, Johnston RN, Shmulevitz M. Potential for improving potency and specificity of reovirus oncolysis with next-generation reovirus variants. Viruses. 2015;7(12):6251–6278. doi:10.3390/v712293626633466
  • Kemp V, Hoeben RC, van den Wollenberg DJ. Exploring reovirus plasticity for improving its use as oncolytic virus. Viruses. 2015;8(1). doi:10.3390/v8010004
  • Comins C, Simpson GR, Relph K, Harrington KJ, Melcher A, Pandha H. Reoviral Therapy for Cancer: Strategies for Improving Antitumor Efficacy Using Radio- and Chemotherapy. In: Lattime E, Gerson S,eds.Gene Therapy of Cancer. 2nd ed., Amsterdam, Netherlands: Elsevier; 2014:185–198.
  • Forrest JC, Dermody TS. Reovirus receptors and pathogenesis. J Virol. 2003;77(17):9109–9115. doi:10.1128/jvi.77.17.9109-9115.200312915527
  • Gong J, Sachdev E, Mita AC, Mita MM. Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol. 2016;6(1):25–42. doi:10.5662/wjm.v6.i1.2527019795
  • Bourhill T, Mori Y, Rancourt DE, Shmulevitz M, Johnston RN. Going (Reo)Viral: factors promoting successful reoviral oncolytic infection. Viruses. 2018;10(8):421. doi:10.3390/v10080421
  • Morris DG, Feng X, DiFrancesco LM, et al. REO-001: A phase I trial of percutaneous intralesional administration of reovirus type 3 dearing (Reolysin(R)) in patients with advanced solid tumors. Invest New Drugs. 2013;31(3):696–706. doi:10.1007/s10637-012-9865-z22886613
  • Cohn DE, Sill MW, Walker JL, et al. Randomized phase IIB evaluation of weekly paclitaxel versus weekly paclitaxel with oncolytic reovirus (Reolysin(R)) in recurrent ovarian, tubal, or peritoneal cancer: an NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 2017;146(3):477–483. doi:10.1016/j.ygyno.2017.07.13528756871
  • Noonan AM, Farren MR, Geyer SM, et al. Randomized phase 2 trial of the oncolytic virus pelareorep (Reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol Ther. 2016;24(6):1150–1158. doi:10.1038/mt.2016.6627039845
  • Bernstein V, Ellard SL, Dent SF, et al. A randomized phase II study of weekly paclitaxel with or without pelareorep in patients with metastatic breast cancer: final analysis of Canadian Cancer Trials Group IND.213. Breast Cancer Res Treat. 2018;167(2):485–493. doi:10.1007/s10549-017-4538-429027598
  • Shmulevitz M, Gujar SA, Ahn DG, Mohamed A, Lee PW. Reovirus variants with mutations in genome segments S1 and L2 exhibit enhanced virion infectivity and superior oncolysis. J Virol. 2012;86(13):7403–7413. doi:10.1128/JVI.00304-1222532697
  • Mohamed A, Teicher C, Haefliger S, Shmulevitz M. Reduction of virion-associated sigma1 fibers on oncolytic reovirus variants promotes adaptation toward tumorigenic cells. J Virol. 2015;89(8):4319–4334. doi:10.1128/JVI.03651-1425653434
  • Jabre R, Sandekian V, Lemay G. Amino acid substitutions in sigma1 and mu1 outer capsid proteins are selected during mammalian reovirus adaptation to Vero cells. Virus Res. 2013;176(1–2):188–198. doi:10.1016/j.virusres.2013.06.00723800405
  • Sandekian V, Lemay G. Amino acids substitutions in sigma1 and mu1 outer capsid proteins of a Vero cell-adapted mammalian orthoreovirus are required for optimal virus binding and disassembly. Virus Res. 2015;196:20–29. doi:10.1016/j.virusres.2014.11.00225445342
  • Lanoie D, Cote S, Degeorges E, Lemay G. A single mutation in the mammalian orthoreovirus S1 gene is responsible for increased interferon sensitivity in a virus mutant selected in Vero cells. Virology. 2018;528:73–79. doi:10.1016/j.virol.2018.12.01030578938
  • Barton ES, Forrest JC, Connolly JL, et al. Junction adhesion molecule is a receptor for reovirus. Cell. 2001;104(3):441–451.11239401
  • Human Protein Atlas. Available from: https://www.proteinatlas.org/. Accessed 2, 2019.
  • Uhlen M, Bjorling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4(12):1920–1932. doi:10.1074/mcp.M500279-MCP20016127175
  • Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248–1250. doi:10.1038/nbt1210-124821139605
  • Chappell JD, Gunn VL, Wetzel JD, Baer GS, Dermody TS. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1. J Virol. 1997;71(3):1834–1841.9032313
  • Barton ES, Connolly JL, Forrest JC, Chappell JD, Dermody TS. Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J Biol Chem. 2001;276(3):2200–2211. doi:10.1074/jbc.M00468020011054410
  • Barton ES, Youree BE, Ebert DH, et al. Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease. J Clin Invest. 2003;111(12):1823–1833. doi:10.1172/JCI1630312813018
  • van den Wollenberg DJ, Dautzenberg IJ, van den Hengel SK, Cramer SJ, de Groot RJ, Hoeben RC. Isolation of reovirus T3D mutants capable of infecting human tumor cells independent of junction adhesion molecule-A. PLoS One. 2012;7(10):e48064. doi:10.1371/journal.pone.004806423110175
  • Matveeva OV, Chumakov PM. Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev Med Virol. 2018;28(6):e2008. doi:10.1002/rmv.v28.630209859
  • Rudd P, Lemay G. Correlation between interferon sensitivity of reovirus isolates and ability to discriminate between normal and Ras-transformed cells. J Gen Virol. 2005;86(Pt 5):1489–1497. doi:10.1099/vir.0.80628-015831962
  • Sandekian V, Lemay G. A single amino acid substitution in the mRNA capping enzyme lambda2 of a mammalian orthoreovirus mutant increases interferon sensitivity. Virology. 2015;483:229–235. doi:10.1016/j.virol.2015.04.02025985441
  • Kim M, Egan C, Alain T, et al. Acquired resistance to reoviral oncolysis in Ras-transformed fibrosarcoma cells. Oncogene. 2007;26(28):4124–4134. doi:10.1038/sj.onc.121018917213803
  • Kim M, Williamson CT, Prudhomme J, et al. The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status. Oncogene. 2010;29(27):3990–3996. doi:10.1038/onc.2010.13720473328
  • Kim M, Garant KA, zur Nieden NI, et al. Attenuated reovirus displays oncolysis with reduced host toxicity. Br J Cancer. 2011;104(2):290–299. doi:10.1038/sj.bjc.660605321179029
  • de Leeuw O, Peeters B. Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol. 1999;80(Pt 1):131–136. doi:10.1099/0022-1317-80-1-1319934695
  • Dimitrov KM, Ramey AM, Qiu X, Bahl J, Afonso CL. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus). Infect Genet Evol. 2016;39:22–34. doi:10.1016/j.meegid.2016.01.00826792710
  • Nelson CB, Pomeroy BS, Schrall K, Park WE, Lindeman RJ. An outbreak of conjunctivitis due to Newcastle disease virus (NDV) occurring in poultry workers. Am J Public Health Nations Health. 1952;42(6):672–678. doi:10.2105/ajph.42.6.67214924001
  • Fournier P, Bian H, Szeberenyi J, Schirrmacher V. Analysis of three properties of Newcastle disease virus for fighting cancer: tumor-selective replication, antitumor cytotoxicity, and immunostimulation. Methods Mol Biol. 2012;797:177–204. doi:10.1007/978-1-61779-340-0_1321948477
  • Zamarin D, Palese P. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol. 2012;7(3):347–367. doi:10.2217/fmb.12.422393889
  • Matveeva OV, Guo ZS, Shabalina SA, Chumakov PM. Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Mol Ther Oncolytics. 2015;2:15011. doi:10.1038/mto.2015.1126640816
  • Matveeva OV, Guo ZS, Senin VM, Senina AV, Shabalina SA, Chumakov PM. Oncolysis by paramyxoviruses: preclinical and clinical studies. Mol Ther Oncolytics. 2015;2:15017. doi:10.1038/mto.2015.17
  • Schirrmacher V. Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biologic agent with potential to break therapy resistance. Expert Opin Biol Ther. 2015;15(12):1757–1771. doi:10.1517/14712598.2015.108800026436571
  • Matveeva OV, Kochneva GV, Zainutdinov SS, Ilyinskaya GV, Chumakov PM. [Oncolytic Paramyxoviruses: mechanism of Action, Preclinical and Clinical Studies]. Mol Biol (Mosk). 2018;52(3):360–379. doi:10.7868/S002689841803002329989571
  • Reichard KW, Lorence RM, Cascino CJ, et al. Newcastle disease virus selectively kills human tumor cells. J Surg Res. 1992;52(5):448–453.1619912
  • Apostolidis L, Schirrmacher V, Fournier P. Host mediated anti-tumor effect of oncolytic Newcastle disease virus after locoregional application. Int J Oncol. 2007;31(5):1009–1019.17912426
  • Schirrmacher V, Griesbach A, Ahlert T. Antitumor effects of Newcastle Disease Virus in vivo: local versus systemic effects. Int J Oncol. 2001;18(5):945–952. doi:10.3892/ijo.18.5.94511295039
  • Schulze T, Kemmner W, Weitz J, Wernecke KD, Schirrmacher V, Schlag PM. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial. Cancer Immunol Immunother. 2009;58(1):61–69. doi:10.1007/s00262-008-0526-118488223
  • Lorence RM, Pecora AL, Major PP, et al. Overview of phase I studies of intravenous administration of PV701, an oncolytic virus. Curr Opin Mol Ther. 2003;5(6):618–624.14755888
  • Laurie SA, Bell JC, Atkins HL, et al. A phase 1 clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clin Cancer Res. 2006;12(8):2555–2562. doi:10.1158/1078-0432.CCR-05-203816638865
  • Lorence RM, Roberts MS, O’Neil JD, et al. Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr Cancer Drug Targets. 2007;7(2):157–167.17346107
  • Hotte SJ, Lorence RM, Hirte HW, et al. An optimized clinical regimen for the oncolytic virus PV701. Clin Cancer Res. 2007;13(3):977–985. doi:10.1158/1078-0432.CCR-06-181717289893
  • Cheng X, Wang W, Xu Q, et al. Genetic modification of oncolytic newcastle disease virus for cancer therapy. J Virol. 2016;90(11):5343–5352. doi:10.1128/JVI.00136-1627009956
  • Beier R, Hermiston T, Mumberg D. Isolation of more potent oncolytic paramyxovirus by bioselection. Gene Ther. 2012;23(10):13.
  • Institute of Laboratory Animal Resources (U.S.). Committee on Infectious Diseases of Mice and Rats. Infectious Diseases of Mice and Rats. Washington (DC): National Academy Press; 1991.
  • Parker JC, Whiteman MD, Richter CB. Susceptibility of inbred and outbred mouse strains to Sendai virus and prevalence of infection in laboratory rodents. Infect Immun. 1978;19(1):123–130.203530
  • Slobod KS, Shenep JL, Lujan-Zilbermann J, et al. Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine. 2004;22(23–24):3182–3186. doi:10.1016/j.vaccine.2004.01.05315297072
  • Adderson E, Branum K, Sealy RE, et al. Safety and immunogenicity of an intranasal Sendai virus-based human parainfluenza virus type 1 vaccine in 3- to 6-year-old children. Clin Vaccine Immunol. 2015;22(3):298–303. doi:10.1128/CVI.00618-1425552633
  • Kinoh H, Inoue M, Washizawa K, et al. Generation of a recombinant Sendai virus that is selectively activated and lyses human tumor cells expressing matrix metalloproteinases. Gene Ther. 2004;11(14):1137–1145. doi:10.1038/sj.gt.330227215085175
  • Yonemitsu Y, Ueda Y, Kinoh H, Hasegawa M. Immunostimulatory virotherapy using recombinant Sendai virus as a new cancer therapeutic regimen. Front Biosci. 2008;13:1892–1898.17981677
  • Kinoh H, Inoue M. New cancer therapy using genetically-engineered oncolytic Sendai virus vector. Front Biosci. 2008;13:2327–2334.17981715
  • Tatsuta K, Tanaka S, Tajiri T, et al. Complete elimination of established neuroblastoma by synergistic action of gamma-irradiation and DCs treated with rSeV expressing interferon-beta gene. Gene Ther. 2009;16(2):240–251. doi:10.1038/gt.2008.16118987675
  • Iwadate Y, Inoue M, Saegusa T, et al. Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin Cancer Res. 2005;11(10):3821–3827. doi:10.1158/1078-0432.CCR-04-148515897582
  • Kurooka M, Kaneda Y. Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 2007;67(1):227–236. doi:10.1158/0008-5472.CAN-06-161517210703
  • Kawano H, Komaba S, Kanamori T, Kaneda Y. A new therapy for highly effective tumor eradication using HVJ-E combined with chemotherapy. BMC Med. 2007;5:28. doi:10.1186/1741-7015-5-2817883878
  • Kawano H, Komaba S, Yamasaki T, et al. New potential therapy for orthotopic bladder carcinoma by combining HVJ envelope with doxorubicin. Cancer Chemother Pharmacol. 2008;61(6):973–978. doi:10.1007/s00280-007-0553-117653716
  • Fujihara A, Kurooka M, Miki T, Kaneda Y. Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation. Cancer Immunol Immunother. 2008;57(1):73–84. doi:10.1007/s00262-007-0351-y17602226
  • Kawaguchi Y, Miyamoto Y, Inoue T, Kaneda Y. Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int J Cancer. 2009;124(10):2478–2487. doi:10.1002/ijc.2423419173282
  • Senina A, Matveeva O, Senin V, Inventors. Method for cancer immunotherapy and pharmaceutical compositions based on oncolytic non-pathogenic Sendai virus. US Patent 9,526,779 2016.
  • Tatsumoto N, Arditi M, Yamashita M. Sendai virus propagation using chicken eggs. Bio Protoc. 2018;8(18). doi:10.21769/BioProtoc.3009
  • Giles RE, Ruddle FH. Production of Sendai virus for cell fusion. In Vitro. 1973;9(2):103–107.4357363
  • Zainutdinov SS, Tikunov AY, Matveeva OV, Netesov SV, Kochneva GV. Complete genome sequence of the oncolytic sendai virus strain Moscow. Genome Announc. 2016;4(4). doi:10.1128/genomeA.00933-16
  • Dalldorf G, Gifford R. Clinical and epidemiologic observations of Coxsackie-virus infection. N Engl J Med. 1951;244(23):868–873. doi:10.1056/NEJM19510607244230214843332
  • Mahy BWJ. Classification and general propeties. In: Bendinelli M, Friedman H, eds. Coxsackieviruses. A General Update. New York City, USA: Springer US; 1988: 1–18.doi:10.1007/978-1-4757-0247-7
  • Shafren DR, Au GG, Nguyen T, et al. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res. 2004;10(1 Pt 1):53–60.14734451
  • Au GG, Lindberg AM, Barry RD, Shafren DR. Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int J Oncol. 2005;26(6):1471–1476. doi:10.3892/ijo.26.6.147115870858
  • Skelding KA, Barry RD, Shafren DR. Enhanced oncolysis mediated by Coxsackievirus A21 in combination with doxorubicin hydrochloride. Invest New Drugs. 2012;30(2):568–581. doi:10.1007/s10637-010-9614-021170760
  • Au GG, Beagley LG, Haley ES, Barry RD, Shafren DR. Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18. Virol J. 2011;8:22. doi:10.1186/1743-422X-8-2221241513
  • Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F. Applications of coxsackievirus A21 in oncology. Oncolytic Virother. 2014;3:47–55. doi:10.2147/OV.S5632227512662
  • Agarwala SS. The role of intralesional therapies in Melanoma. Oncology (Williston Park). 2016;30(5):436–441.27188674
  • Miyamoto S, Inoue H, Nakamura T, et al. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 2012;72(10):2609–2621. doi:10.1158/0008-5472.CAN-11-318522461509
  • Miyamoto S, Sagara M, Kohara H, Tani K. Oncolytic coxsackievirus therapy as an immunostimulator. Rinsho Ketsueki. 2017;58(8):977–982. doi:10.11406/rinketsu.58.97728883283
  • Shafren DR, Dorahy DJ, Ingham RA, Burns GF, Barry RD. Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol. 1997;71(6):4736–4743.9151867
  • Johansson ES, Xing L, Cheng RH, Shafren DR. Enhanced cellular receptor usage by a bioselected variant of coxsackievirus a21. J Virol. 2004;78(22):12603–12612. doi:10.1128/JVI.78.22.12603-12612.200415507647
  • Polacek C, Ekstrom JO, Lundgren A, Lindberg AM. Cytolytic replication of coxsackievirus B2 in CAR-deficient rhabdomyosarcoma cells. Virus Res. 2005;113(2):107–115. doi:10.1016/j.virusres.2005.04.02115964091
  • Pan J, Narayanan B, Shah S, et al. Single amino acid changes in the virus capsid permit coxsackievirus B3 to bind decay-accelerating factor. J Virol. 2011;85(14):7436–7443. doi:10.1128/JVI.00503-1121561916
  • Reagan KJ, Goldberg B, Crowell RL. Altered receptor specificity of coxsackievirus B3 after growth in rhabdomyosarcoma cells. J Virol. 1984;49(3):635–640.6321753
  • Smura T, Natri O, Ylipaasto P, et al. Enterovirus strain and type-specific differences in growth kinetics and virus-induced cell destruction in human pancreatic duct epithelial HPDE cells. Virus Res. 2015;210:188–197. doi:10.1016/j.virusres.2015.08.00326260332
  • Svyatchenko VA, Ternovoy VA, Kiselev NN, et al. Bioselection of coxsackievirus B6 strain variants with altered tropism to human cancer cell lines. Arch Virol. 2017;162(11):3355–3362. doi:10.1007/s00705-017-3492-028766058
  • Montmayeur AM, Ng TF, Schmidt A, et al. High-throughput next-generation sequencing of polioviruses. J Clin Microbiol. 2017;55(2):606–615. doi:10.1128/JCM.02121-1627927929
  • Sabine AB, Boulger LR. History of Sabin attenuated poliovirus oral live vaccine strains. J Biol Stand. 1973;1(2):115–118. doi:10.1016/0092-1157(73)90048-6
  • Bandyopadhyay AS, Garon J, Seib K, Orenstein WA. Polio vaccination: past, present and future. Future Microbiol. 2015;10(5):791–808. doi:10.2217/fmb.15.1925824845
  • Brown MC, Dobrikova EY, Dobrikov MI, et al. Oncolytic polio virotherapy of cancer. Cancer. 2014;120(21):3277–3286. doi:10.1002/cncr.2886224939611
  • Bleeker FE, Molenaar RJ, Leenstra S. Recent advances in the molecular understanding of glioblastoma. J Neurooncol. 2012;108(1):11–27. doi:10.1007/s11060-011-0793-022270850
  • Desjardins A, Gromeier M, Herndon JE 2nd, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–161. doi:10.1056/NEJMoa171643529943666
  • Thompson EM, Brown M, Dobrikova E, et al. Poliovirus receptor (CD155) expression in pediatric brain tumors mediates oncolysis of medulloblastoma and pleomorphic xanthoastrocytoma. J Neuropathol Exp Neurol. 2018;77(8):696–702. doi:10.1093/jnen/nly04529878245
  • Holl EK, Brown MC, Boczkowski D, et al. Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget. 2016;7(48):79828–79841. doi:10.18632/oncotarget.1297527806313
  • Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol. 2015;13:81–85. doi:10.1016/j.coviro.2015.05.00726083317
  • Brown MC, Holl EK, Boczkowski D, et al. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci Transl Med. 2017;9:408. doi:10.1126/scitranslmed.aan4220
  • Walton RW, Brown MC, Sacco MT, Gromeier M. Engineered oncolytic poliovirus PVSRIPO subverts MDA5-dependent innate immune responses in cancer cells. J Virol. 2018;92(19). doi:10.1128/JVI.02230-17
  • Gromeier M, Nair SK. Recombinant poliovirus for cancer immunotherapy. Annu Rev Med. 2018;69:289–299. doi:10.1146/annurev-med-050715-10465529414253
  • Sanjuan R, Grdzelishvili VZ. Evolution of oncolytic viruses. Curr Opin Virol. 2015;13:1–5. doi:10.1016/j.coviro.2015.01.01425699475
  • Kew OM, Nottay BK, Hatch MH, Nakano JH, Obijeski JF. Multiple genetic changes can occur in the oral poliovaccines upon replication in humans. J Gen Virol. 1981;56(Pt 2):337–347. doi:10.1099/0022-1317-56-2-3376273502
  • Famulare M, Chang S, Iber J, et al. Sabin vaccine reversion in the field: a comprehensive analysis of sabin-like poliovirus isolates in Nigeria. J Virol. 2016;90(1):317–331. doi:10.1128/JVI.01532-1526468545
  • Dobrikova EY, Broadt T, Poiley-Nelson J, et al. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol Ther. 2008;16(11):1865–1872. doi:10.1038/mt.2008.18418766173
  • Lyles DS, Kusmin IV, Rupprecht CE. Rhabdoviridae In: Fields BN, Knipe DM, Howley PM, eds. Fields Virology, Vol. 1, Chapter 31, 6th ed. Philadelphia, USA: Walters Kluwer, Lippincott Williams & Wilkins; 2013: 885–922
  • Felt SA, Grdzelishvili VZ. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol. 2017. doi:10.1099/jgv.0.000980
  • Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic vesicular stomatitis virus as a viro-immunotherapy: defeating cancer with a “Hammer” and “Anvil”. Biomedicines. 2017;5(1). doi:10.3390/biomedicines5010008
  • Gao Y, Whitaker-Dowling P, Watkins SC, Griffin JA, Bergman I. Rapid adaptation of a recombinant vesicular stomatitis virus to a targeted cell line. J Virol. 2006;80(17):8603–8612. doi:10.1128/JVI.00142-0616912309
  • Wollmann G, Tattersall P, van den Pol AN. Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol. 2005;79(10):6005–6022. doi:10.1128/JVI.79.10.6005-6022.200515857987
  • Garijo R, Hernandez-Alonso P, Rivas C, Diallo JS, Sanjuan R. Experimental evolution of an oncolytic vesicular stomatitis virus with increased selectivity for p53-deficient cells. PLoS One. 2014;9(7):e102365. doi:10.1371/journal.pone.010236525010337
  • Lauring AS, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010;6(7):e1001005. doi:10.1371/journal.ppat.100097520661479
  • Borderia AV, Rozen-Gagnon K, Vignuzzi M. Fidelity variants and RNA quasispecies. Curr Top Microbiol Immunol. 2016;392:303–322. doi:10.1007/82_2015_48326499340
  • Duffy S. Why are RNA virus mutation rates so damn high? PLoS Biol. 2018;16(8):e3000003. doi:10.1371/journal.pbio.300000330102691