245
Views
3
CrossRef citations to date
0
Altmetric
Review

The Impact of Pharmacogenetics on Pharmacokinetics and Pharmacodynamics in Neonates and Infants: A Systematic Review

, , , &
Pages 675-696 | Published online: 30 Jun 2022

References

  • Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics. Lancet. 2019;394(10197):521–532. doi:10.1016/S0140-6736(19)31276-0
  • Gregornik D, Salyakina D, Brown M, Roiko S, Ramos K. Pediatric pharmacogenomics: challenges and opportunities: on behalf of the Sanford Children’s Genomic Medicine Consortium. Pharmacogenomics J. 2021;21(1):8–19. doi:10.1038/s41397-020-00181-w
  • Lewis T, Leeder JS. Pharmacogenomics and implementation of precision therapeutics in the neonatal ICU: a new frontier? Pharmacogenomics. 2018;19(16):1231–1233. doi:10.2217/pgs-2018-0132
  • Lewis T. Neonatal pharmacogenetics. In: Benitz WE, Smith PB, editors. Infectious Disease and Pharmacology. Amsterdam: Elsevier; 2019:141–153.
  • De Cock RFW, Piana C, Krekels EHJ, Danhof M, Allegaert K, Knibbe CAJ. The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011;67:S5–S16. doi:10.1007/s00228-009-0782-9
  • Smits A, Kulo A, de Hoon JN, Allegaert K. Pharmacokinetics of drugs in neonates: pattern recognition beyond compound specific observations. Curr Pharm Design. 2012;18(21):3119–3146. doi:10.2174/1381612811209023119
  • Shah RR, Smith RL. Addressing phenoconversion: the Achilles’ heel of personalized medicine. Br J Clin Pharmacol. 2015;79(2):222–240. doi:10.1111/bcp.12441
  • Di Nunno N, Esposito M, Argo A, Salerno M, Sessa F. Pharmacogenetics and forensic toxicology: a new step towards a multidisciplinary approach. Toxics. 2021;9(11):292. doi:10.3390/toxics9110292
  • Allegaert K, van den Anker JN. Clinical pharmacology in neonates: small size, huge variability. Neonatology. 2014;105(4):344–349. doi:10.1159/000360648
  • Patrinos GP. Sketching the prevalence of pharmacogenomic biomarkers among populations for clinical pharmacogenomics. Eur J Human Genet. 2020;28(1):1–3. doi:10.1038/s41431-019-0499-x
  • Durrmeyer X, Hovhannisyan S, Medard Y, et al. Are cytochrome P450 CYP2C8 and CYP2C9 polymorphisms associated with ibuprofen response in very preterm infants? PLoS One. 2010;5(8):e12329. doi:10.1371/journal.pone.0012329
  • Sistonen J, Madadi P, Ross CJ, et al. Prediction of codeine toxicity in infants and their mothers using a novel combination of maternal genetic markers. Clin Pharmacol Ther. 2012;91(4):692–699. doi:10.1038/clpt.2011.280
  • Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. doi:10.1136/bmj.b2535
  • Yalcin N, Flint R, Koch B, van Schaik RH, Simons S, Allegaert A. A systematic review on the until currently reported observations on the impact of pharmacogenetics on pharmacokinetics or pharmacodynamics in neonates. PROSPERO 2022 CRD42022302029. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022302029. Accessed March 2, 2022.
  • Stark A, Smith PB, Hornik CP, et al. Medication use in the neonatal intensive care unit and changes from 2010 to 2018. J Pediatr. 2022;240:66-+. doi:10.1016/j.jpeds.2021.08.075
  • Wells GA, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses; 2009. Available from: http://www.ohrica/programs/clinical_epidemiology/oxfordasp. Accessed March 2, 2022.
  • The Joanna Briggs Institute critical appraisal tools for use in JBI systematic reviews checklist for case reports. Available from: https://jbi.global/critical-appraisal-tools. Accessed March 2, 2022.
  • Gao XB, Zheng Y, Yang F, et al. Developmental population pharmacokinetics of caffeine in Chinese premature infants with apnoea of prematurity: a post-marketing study to support paediatric labelling in China. Br J Clin Pharmacol. 2021;87(3):1155–1164. doi:10.1111/bcp.14483
  • Guan Y, Li B, Wei W, et al. Quantitative ultra-high-performance liquid chromatography-tandem mass spectrometry for determination of dexmedetomidine in pediatric plasma samples: correlation with genetic polymorphisms. Biomed Chromatogr. 2019;33(12):e4683. doi:10.1002/bmc.4683
  • Barnett S, Errington J, Sludden J, et al. Pharmacokinetics and pharmacogenetics of cyclophosphamide in a neonate and infant childhood cancer patient population. Pharmaceuticals. 2021;14:272. doi:10.3390/ph14030272
  • Rooney SR, Shelton EL, Aka I, et al. CYP2C9*2 is associated with indomethacin treatment failure for patent ductus arteriosus. Pharmacogenomics. 2019;20(13):939–946. doi:10.2217/pgs-2019-0079
  • Smith CJ, Ryckman KK, Bahr TM, Dagle JM. Polymorphisms in CYP2C9 are associated with response to indomethacin among neonates with patent ductus arteriosus. Pediatr Res. 2017;82(5):776–780. doi:10.1038/pr.2017.145
  • Veeravigrom M, Jaroonvanichkul V, Netbaramee W, Phaisarn P, Uyathanarat T. Phenytoin toxicity in two-month-old Thai infant with CYP2C9 gene polymorphism - A case report. Brain Dev. 2016;38(1):136–138. doi:10.1016/j.braindev.2015.05.001
  • Hamberg AK, Friberg LE, Hanseus K, et al. Warfarin dose prediction in children using pharmacometric bridging–comparison with published pharmacogenetic dosing algorithms. Eur J Clin Pharmacol. 2013;69(6):1275–1283. doi:10.1007/s00228-012-1466-4
  • Maagdenberg H, Bierings MB, van Ommen CH, et al. The pediatric acenocoumarol dosing algorithm: the children anticoagulation and pharmacogenetics study. J Thromb Haemost. 2018;16(9):1732–1742. doi:10.1111/jth.14211
  • Moreau C, Bajolle F, Siguret V, et al. Vitamin K antagonists in children with heart disease: height and VKORC1 genotype are the main determinants of the warfarin dose requirement. Blood. 2012;119(3):861–867. doi:10.1182/blood-2011-07-365502
  • Lee SM, Chung JY, Lee YM, et al. Effects of cytochrome P450 (CYP)2C19 polymorphisms on pharmacokinetics of phenobarbital in neonates and infants with seizures. Arch Dis Child. 2012;97(6):569–572. doi:10.1136/archdischild-2011-300538
  • Ward RM, Tammara B, Sullivan SE, et al. Single-dose, multiple-dose, and population pharmacokinetics of pantoprazole in neonates and preterm infants with a clinical diagnosis of gastroesophageal reflux disease (GERD). Eur J Clin Pharmacol. 2010;66(6):555–561. doi:10.1007/s00228-010-0811-8
  • Zhao W, Leroux S, Biran V, Jacqz-Aigrain E. Developmental pharmacogenetics of CYP2C19 in neonates and young infants: omeprazole as a probe drug. Br J Clin Pharmacol. 2018;84(5):997–1005. doi:10.1111/bcp.13526
  • Blake MJ, Gaedigk A, Pearce RE, et al. Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther. 2007;81(4):510–516. doi:10.1038/sj.clpt.6100101
  • Allegaert K, van Schaik RH, Vermeersch S, et al. Postmenstrual age and CYP2D6 polymorphisms determine tramadol o-demethylation in critically ill neonates and infants. Pediatr Res. 2008;63(6):674–679. doi:10.1203/PDR.0b013e31816ff712
  • Allegaert K, de Hoon J, Naulaers G, Van De Velde M. Neonatal clinical pharmacology: recent observations of relevance for anaesthesiologists. Acta Anaesthesiol Belg. 2008;59(4):283–288.
  • Gorny M, Röhm S, Läer S, Morali N, Niehues T. Pharmacogenomic adaptation of antiretroviral therapy: overcoming the failure of lopinavir in an African infant with CYP2D6 ultrarapid metabolism. Eur J Clin Pharmacol. 2010;66(1):107–108. doi:10.1007/s00228-009-0753-1
  • Shimizu M, Kondo T, Fukuoka T, Tanaka T, Yamazaki H. Dihydrocodeine overdoses in a neonate and in a 14-year-old girl who were both genotyped as cytochrome P450 2D6*1/*10-*36: comparing developmental ages and drug monitoring data with the results of pharmacokinetic modeling. Ther Drug Monit. 2018;40(2):162–165. doi:10.1097/FTD.0000000000000482
  • Fukudo M, Yano I, Masuda S, et al. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin Pharmacol Ther. 2006;80(4):331–345. doi:10.1016/j.clpt.2006.06.008
  • Chen YK, Han LZ, Xue F, et al. Personalized tacrolimus dose requirement by CYP3A5 but not ABCB1 or ACE genotyping in both recipient and donor after pediatric liver transplantation. PLoS One. 2014;9(10). doi:10.1371/journal.pone.0109464
  • Uesugi M, Masuda S, Katsura T, Oike F, Takada Y, Inui K. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet Genomics. 2006;16(2):119–127. doi:10.1097/01.fpc.0000184953.31324.e4
  • de Wildt SN, van Schaik RH, Soldin OP, et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol. 2011;67(12):1231–1241. doi:10.1007/s00228-011-1083-7
  • Xue F, Han L, Chen Y, et al. CYP3A5 genotypes affect tacrolimus pharmacokinetics and infectious complications in Chinese pediatric liver transplant patients. Pediatr Transplant. 2014;18(2):166–176. doi:10.1111/petr.12216
  • Gijsen V, Mital S, van Schaik RH, et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients. J Heart Lung Transplant. 2011;30(12):1352–1359. doi:10.1016/j.healun.2011.08.001
  • Sridharan K, Al Jufairi M, Al Ansari E, et al. Evaluation of urinary Acetaminophen metabolites and its association with the genetic polymorphisms of the metabolising enzymes, and serum Acetaminophen concentrations in preterm neonates with patent ductus arteriosus. Xenobiotica. 2021;51:1335–1342. doi:10.1080/00498254.2021.1982070
  • Langaee T, Al-Shaer MH, Gong Y, et al. Pharmacogenetic predictors of nevirapine pharmacokinetics in Ghanaian children living with HIV with or without TB coinfection. Infect Genet Evol. 2021;92:104856. doi:10.1016/j.meegid.2021.104856
  • Ansari M, Lauzon-Joset JF, Vachon MF, et al. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children. Bone Marrow Transplant. 2010;45(2):261–267. doi:10.1038/bmt.2009.143
  • Ashton LJ, Murray JE, Haber M, Marshall GM, Ashley DM, Norris MD. Polymorphisms in genes encoding drug metabolizing enzymes and their influence on the outcome of children with neuroblastoma. Pharmacogenet Genomics. 2007;17(9):709–717. doi:10.1097/FPC.0b013e3280e1cc92
  • Keller GA, Fabian L, Gomez M, Gonzalez CD, Diez RA, Girolamo GD. Age-distribution and genotype-phenotype correlation for N-acetyltransferase in Argentine children under isoniazid treatment. Int J Clin Pharmacol Ther. 2014;52(4):292–302. doi:10.5414/CP201957
  • Schaaf HS, Parkin DP, Seifart HI, et al. Isoniazid pharmacokinetics in children treated for respiratory tuberculosis. Arch Dis Child. 2005;90(6):614–618. doi:10.1136/adc.2004.052175
  • Zielinska E, Bodalski J, Niewiarowski W, Bolanowski W, Matusiak I. Comparison of acetylation phenotype with genotype coding for N-acetyltransferase (NAT2) in children. Pediatr Res. 1999;45(3):403–408. doi:10.1203/00006450-199903000-00019
  • Zielińska E, Niewiarowski W, Bodalski J, et al. Genotyping of the arylamine N-acetyltransferase polymorphism in the prediction of idiosyncratic reactions to trimethoprim-sulfamethoxazole in infants. Pharm World Sci. 1998;20(3):123–130. doi:10.1023/A:1008664707825
  • Zhu R, Kiser JJ, Seifart HI, et al. The pharmacogenetics of NAT2 enzyme maturation in perinatally HIV exposed infants receiving isoniazid. J Clin Pharmacol. 2012;52(4):511–519. doi:10.1177/0091270011402826
  • Linakis MW, Cook SF, Kumar SS, et al. Polymorphic expression of UGT1A9 is associated with variable acetaminophen glucuronidation in neonates: a population pharmacokinetic and pharmacogenetic study. Clin Pharmacokinet. 2018;57(10):1325–1336. doi:10.1007/s40262-018-0634-9
  • Matic M, Norman E, Rane A, et al. Effect of UGT2B7-900G>A (−842G>A; rs7438135) on morphine glucuronidation in preterm newborns: results from a pilot cohort. Pharmacogenomics. 2014;15(12):1589–1597. doi:10.2217/pgs.14.115
  • Matic M, Simons SH, van Lingen RA, et al. Rescue morphine in mechanically ventilated newborns associated with combined OPRM1 and COMT genotype. Pharmacogenomics. 2014;15(10):1287–1295. doi:10.2217/pgs.14.100
  • Fanta S, Niemi M, Jonsson S, et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics. 2008;18(2):77–90. doi:10.1097/FPC.0b013e3282f3ef72
  • Hill CR, Cole M, Errington J, Malik G, Boddy AV, Veal GJ. Characterisation of the clinical pharmacokinetics of actinomycin D and the influence of ABCB1 pharmacogenetic variation on actinomycin D disposition in children with cancer. Clin Pharmacokinet. 2014;53(8):741–751. doi:10.1007/s40262-014-0153-2
  • Wachman EM, Hayes MJ, Sherva R, et al. Association of maternal and infant variants in PNOC and COMT genes with neonatal abstinence syndrome severity. Am J Addict. 2017;26(1):42–49. doi:10.1111/ajad.12483
  • Hronová K, Pokorná P, Posch L, Slanař O. Sufentanil and midazolam dosing and pharmacogenetic factors in pediatric analgosedation and withdrawal syndrome. Physiol Res. 2016;65(4):S463–S472. doi:10.33549/physiolres.933519
  • Pogliani L, Mameli C, Cattaneo D, et al. Acute kidney injury in a preterm infant homozygous for the C3435T polymorphism in the ABCB1 gene given oral morphine. Clin Kidney J. 2012;5(5):431–433. doi:10.1093/ckj/sfs099
  • Hawwa AF, McKiernan PJ, Shields M, Millership JS, Collier PS, McElnay JC. Influence of ABCB1 polymorphisms and haplotypes on tacrolimus nephrotoxicity and dosage requirements in children with liver transplant. Br J Clin Pharmacol. 2009;68(3):413–421. doi:10.1111/j.1365-2125.2009.03461.x
  • Roberts JK, Birg AV, Lin T, et al. Population pharmacokinetics of oral topotecan in infants and very young children with brain tumors demonstrates a role of ABCG2 rs4148157 on the absorption rate constant. Drug Metab Dispos. 2016;44(7):1116–1122. doi:10.1124/dmd.115.068676
  • Hahn D, Fukuda T, Euteneuer JC, et al. Influence of MRP3 genetics and hepatic expression ontogeny for morphine disposition in neonatal and pediatric patients. J Clin Pharmacol. 2020;60(8):992–998. doi:10.1002/jcph.1592
  • Matic M, de Wildt SN, Elens L, et al. SLC22A1/OCT1 genotype affects O-desmethyltramadol exposure in newborn infants. Ther Drug Monit. 2016;38(4):487–492. doi:10.1097/FTD.0000000000000307
  • Hahn D, Emoto C, Euteneuer JC, Mizuno T, Vinks AA, Fukuda T. Influence of OCT1 ontogeny and genetic variation on morphine disposition in critically ill neonates: lessons from PBPK modeling and clinical study. Clin Pharmacol Ther. 2019;105(3):761–768. doi:10.1002/cpt.1249
  • Elens L, Norman E, Matic M, Rane A, Fellman V, van Schaik RHN. Genetic predisposition to poor opioid response in preterm infants: impact of KCNJ6 and COMT polymorphisms on pain relief after endotracheal intubation. Ther Drug Monit. 2016;38(4):525–533. doi:10.1097/FTD.0000000000000301
  • Cao MZ, Wu YH, Wen SM, et al. Mitogen-activated protein kinase eight polymorphisms are associated with immune responsiveness to HBV vaccinations in infants of HBsAg(+)/HBeAg(-) mothers. BMC Infect Dis. 2018;18(1). doi:10.1186/s12879-018-3166-x
  • Enlund-Cerullo M, Koljonen L, Holmlund-Suila E, et al. Genetic variation of the vitamin D binding protein affects vitamin D status and response to supplementation in infants. J Clin Endocrinol Metab. 2019;104(11):5483–5498. doi:10.1210/jc.2019-00630
  • Lewis T, Truog W, Norberg M, Ballard PL, Torgerson D, Group TS. Genetic variation in CRHR1 is associated with short-term respiratory response to corticosteroids in preterm infants at risk for bronchopulmonary dysplasia. Pediatr Res. 2019;85(5):625–633. doi:10.1038/s41390-018-0235-1
  • Kato Y, Ichida F, Saito K, et al. Effect of the VKORC1 genotype on warfarin dose requirements in Japanese pediatric patients. Drug Metab Pharmacokinet. 2011;26(3):295–299. doi:10.2133/dmpk.DMPK-10-NT-082
  • Nehlig A, Alexander SPH. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev. 2018;70(2):384–411. doi:10.1124/pr.117.014407
  • van Groen BD, Nicolai J, Kuik AC, et al. Ontogeny of hepatic transporters and drug-metabolizing enzymes in humans and in nonclinical species. Pharmacol Rev. 2021;73(2):597–678. doi:10.1124/pharmrev.120.000071
  • Aranda JV, Beharry KD. Pharmacokinetics, pharmacodynamics and metabolism of caffeine in newborns. Semin Fetal Neonatal Med. 2020;25(6):101183. doi:10.1016/j.siny.2020.101183
  • Allegaert K, Holford N, Anderson BJ, et al. Tramadol and o-desmethyl tramadol clearance maturation and disposition in humans: a pooled pharmacokinetic study. Clin Pharmacokinet. 2015;54(2):167–178. doi:10.1007/s40262-014-0191-9
  • Leeder JS. Developmental pharmacogenetics: a general paradigm for application to neonatal pharmacology and toxicology. Clin Pharmacol Ther. 2009;86(6):678–682. doi:10.1038/clpt.2009.195
  • Xue F, Han L, Chen Y, et al. CYP3A5 genotypes affect tacrolimus pharmacokinetics and infectious complications in Chinese pediatric liver transplant patients. Pediatr Transplant. 2014;18(2):166–76. PMID: 2443821. doi:10.1111/petr.12216
  • Yang YL, Lin DT, Chang SK. Pharmacogenomic variations in treatment protocols for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2010;54(2):206–11. doi:10.1002/pbc.22292
  • Yang TH, Chen YK, Xue F, et al. Influence of CYP3A5 genotypes on tacrolimus dose requirement: age and its pharmacological interaction with ABCB1 genetics in the Chinese paediatric liver transplantation. Int J Clin Pract Suppl. 2015;(183):53–62. PMID: 26176181. doi:10.1111/ijcp.12667
  • Zwaveling J, Press RR, Bredius RG, et al. Glutathione S-transferase polymorphisms are not associated with population pharmacokinetic parameters of busulfan in pediatric patients. Ther Drug Monit. 2008;30(4):504–10. PMID: 18641537. doi:10.1097/FTD.0b013e3181817428
  • Wachman EM, Hayes MJ, Brown MS, et al. Association of OPRM1 and COMT single-nucleotide polymorphisms with hospital length of stay and treatment of neonatal abstinence syndrome. JAMA. 2013;309(17):1821–7. PMID: 23632726 PMCID: PMC4432911. doi:10.1001/jama.2013.3411