179
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Association Between Selected Single Nucleotide Polymorphisms in Globin and Related Genes and Response to Hydroxyurea Therapy in Ghanaian Children with Sickle Cell Disease

, , , &
Pages 205-214 | Published online: 10 Mar 2022

References

  • Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017;390(10091):311–323. doi:10.1016/S0140-6736(17)30193-9
  • Agrawal RK, Patel RK, Shah V, Nainiwal L, Trivedi B. Hydroxyurea in sickle cell disease: drug review. Indian J Hematol Blood Transfus. 2014;30(2):91–96. doi:10.1007/s12288-013-0261-4
  • Lebensburger JD, Pestina TI, Ware RE, Boyd KL, Persons DA. Hydroxyurea therapy requires HbF induction for clinical benefit in a sickle cell mouse model. Haematologica. 2010;95(9):1599–1603. doi:10.3324/haematol.2010.023325
  • Pallis FR, Conran N, Fertrin KY, Olalla Saad ST, Costa FF, Franco-Penteado CF. Hydroxycarbamide reduces eosinophil adhesion and degranulation in sickle cell anaemia patients. Br J Haematol. 2014;164(2):286–295. doi:10.1111/bjh.12628
  • Wang WC, Ware RE, Miller ST, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet. 2011;377:1663–1672. doi:10.1016/S0140-6736(11)60355-3
  • Ware RE. Hydroxycarbamide: clinical aspects. Comptes Rendus - Biol. 2013;336(3):177–182. doi:10.1016/j.crvi.2012.09.006
  • Green NS, Barral S. Genetic modifiers of HbF and response to hydroxyurea in sickle cell disease. Pediatr Blood Cancer. 2011;56(2):177–181. doi:10.1002/pbc.22754
  • Green NS, Ender KL, Pashankar F, et al. Candidate sequence variants and fetal hemoglobin in children with sickle cell disease treated with hydroxyurea. PLoS One. 2013;8(2):1–6. doi:10.1371/journal.pone.0055709
  • Steinberg MH, Lu ZH, Barton FB, Terrin ML, Charache S, Dover GJ; Multicenter Study of Hydroxyurea. Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Blood. 1997;89(3):1078–1088. doi:10.1182/blood.V89.3.1078
  • Friedrisch JR, Sheehan V, Flanagan JM, et al. The role of BCL11A and HMIP-2 polymorphisms on endogenous and hydroxyurea induced levels of fetal hemoglobin in sickle cell anemia patients from southern Brazil. Blood Cells Mol Dis. 2016;62:32–37. doi:10.1016/j.bcmd.2016.11.002
  • El Gawhary S, Farid M, Ezzat M, ElAwady H, Mostafa H. XmnI polymorphism in Egyptian patients with β-thalassemia major and its correlation with the HbF level. Gene Reports. 2018;11:69–73. doi:10.1016/J.GENREP.2018.02.005
  • Mikobi TM, Tshilobo lukusa P, Aloni MN, et al. Protective BCL11A and HBS1L-MYB polymorphisms in a cohort of 102 Congolese patients suffering from sickle cell anemia. J Clin Lab Anal. 2018;32:e22207. doi:10.1002/jcla.22207
  • Fanis P, Kousiappa I, Phylactides M, Kleanthous M. Genotyping of BCL11A and HBS1L-MYB SNPs associated with fetal haemoglobin levels: a SNaPshot minisequencing approach. BMC Genom. 2014;15:108. doi:10.1186/1471-2164-15-108
  • Adjei GO, Goka BQ, Enweronu-Laryea CC, et al. A randomized trial of artesunate-amodiaquine versus artemether-lumefantrine in Ghanaian paediatric sickle cell and non-sickle cell disease patients with acute uncomplicated malaria. Malar J. 2014;13(1):369. doi:10.1186/1475-2875-13-369
  • Jonxis JH, Husman TH. The detection and estimation of fetal hemoglobin by means of the alkali denaturation test. Blood. 2002;1956(11):1009–1018.
  • Rujito L, Basalamah M, Siswandari W, et al. Modifying effect of XmnI, BCL11A, and HBS1L-MYB on clinical appearances: a study on β-thalassemia and hemoglobin E/β-thalassemia patients in Indonesia. Hematol Oncol Stem Cell Ther. 2016;9(2):55–63. doi:10.1016/j.hemonc.2016.02.003
  • Ware RE, Despotovic JM, Mortier NA, et al. Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia. Blood. 2017;118(18):4985–4992. DOI:10.1182/blood-2011-07-364190.The
  • Cocou S, Alexandre M, Dé Hou Y, et al. Hydroxyurea alters hematological, biochemical and inflammatory biomarkers in Brazilian children with SCA: investigating associations with βS haplotype and α-thalassemia. PLoS One. 2019. doi:10.1371/journal.pone.0218040
  • Karimi M, Jooya P, Haghpanah S, et al. Evaluation of the relationship between Hb F levels and nucleated red blood cells with morbidity in non transfusion-dependent thalassemia patients. Hemoglobin. 2016;40(4):250–256. doi:10.1080/03630269.2016.1183212
  • Lettre G, Sankaran VG, André M, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and NL -globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. PNAS. 2008;105(33):11869–11874. doi:10.1073/pnas.0804799105
  • Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science (80-). 2013;342(6155):253–257. doi:10.1126/science.1242088
  • Cardoso GL, Diniz IG, Martins da Silva ANL, et al. DNA polymorphisms at BCL11A, HBS1L-MYB and Xmn1-HBG2 site loci associated with fetal hemoglobin levels in sickle cell anemia patients from Northern Brazil. Blood Cells Mol Dis. 2014;53(4):176–179. doi:10.1016/j.bcmd.2014.07.006
  • Sebastiani P, Farrell JJ, Alsultan A, et al. BCL11A enhancer haplotypes and fetal hemoglobin in sickle cell anemia. Blood Cells Mol Dis. 2015;54(3):224–230. doi:10.1016/j.bcmd.2015.01.001
  • Adekile A, Menzel S, Gupta R, et al. Response to hydroxyurea among Kuwaiti patients with sickle cell disease and elevated baseline HbF levels. Am J Hematol. 2015;90(7):E138–E139. doi:10.1002/AJH.24027
  • Chaouch L, Moumni I, Ouragini H, et al. rs11886868 and rs4671393 of BCL11A associated with HbF level variation and modulate clinical events among sickle cell anemia patients. Hematology. 2016;21(7):425–429. doi:10.1080/10245332.2015.1107275
  • Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc Natl Acad Sci U S A. 2008;105(5):1620–1625. doi:10.1073/pnas.0711566105
  • Flanagan JM, Steward S, Howard TA, et al. Hydroxycarbamide alters erythroid gene expression in children with sickle cell anaemia. Br J Haematol. 2012;157(2):240–248. doi:10.1111/j.1365-2141.2012.09061.x
  • Stadhouders R, Aktuna S, Thongjuea S, et al. HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J Clin Invest. 2014;124(4):1699–1710. doi:10.1172/JCI71520
  • Moez P, Moftah R, Mahmoud HA. A study on the genotype frequency of −158 Gγ (C→T) Xmn1 polymorphism in a sickle cell trait cohort from Siwa Oasis, Egypt. J Genet. 2018;97(2):505–511. doi:10.1007/s12041-018-0942-8
  • Said F, Abdel-Salam A. XmnI polymorphism: relation to β-thalassemia phenotype and genotype in Egyptian children. Egypt J Med Hum Genet. 2015;16(2):123–127. doi:10.1016/J.EJMHG.2014.12.005
  • Zuhdi Nimer S, Ali W, Khalil H, Nimer SZ. Association of BCL11A genetic polymorphisms with fetal haemoglobin level in Sudanese patients with sickle cell anaemia. J Genom Gene Study. 2019;2:2.
  • Pule GD, Ngo Bitoungui VJ, Chetcha Chemegni B, Kengne AP, Antonarakis S, Wonkam A. Association between variants at BCL11A erythroid-specific enhancer and fetal hemoglobin levels among sickle cell disease patients in Cameroon: implications for future therapeutic interventions. Omi A J Integr Biol. 2015;19(10):627–631. doi:10.1089/omi.2015.0124
  • Hashemi-Soteh MB, Mousavi SS, Tafazoli A. Haplotypes inside the beta-globin gene: use as new biomarkers for beta-thalassemia prenatal diagnosis in north of Iran. J Biomed Sci. 2017;24(1):92. doi:10.1186/s12929-017-0396-y
  • Pandey S, Pandey S, Mishra RM, Saxena R. Modulating effect of the −158 Gγ (C-→T) Xmn1 polymorphism in Indian sickle cell patients. Mediterr J Hematol Infect Dis. 2012;4(1):e2012001. doi:10.4084/MJHID.2012.001
  • Bhagat S, Patra PK, Thakur AS. Association between XmnI polymorphism and HbF level in sickle cell disease patients from Chhattisgarh. Int J Biomed Sci. 2012;8(1):36–39.