209
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

AZGP1 Up-Regulation is a Potential Target for Andrographolide Reversing Radioresistance of Colorectal Cancer

, , , , , , , , , & ORCID Icon show all
Pages 999-1017 | Received 04 Feb 2022, Accepted 05 Dec 2022, Published online: 13 Dec 2022

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Smith CA, Kachnic LA. Evolving treatment paradigm in the treatment of locally advanced rectal cancer. J Natl Compr Canc Netw. 2018;16(7):909–915. doi:10.6004/jnccn.2018.7032
  • Nacion AJD, Park YY, Kim NK. Contemporary management of locally advanced rectal cancer: resolving issues, controversies and shifting paradigms. Chin J Cancer Res. 2018;30(1):131–146. doi:10.21147/j.issn.1000-9604.2018.01.14
  • Benson AB, Venook AP, Al-Hawary MM, et al. Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16(7):874–901. doi:10.6004/jnccn.2018.0061
  • Cabrera-Licona A, Perez-Anorve IX, Flores-Fortis M, et al. Deciphering the epigenetic network in cancer radioresistance. Radiother Oncol. 2021;159:48–59. doi:10.1016/j.radonc.2021.03.012
  • Boeckman HJ, Trego KS, Turchi JJ. Cisplatin sensitizes cancer cells to ionizing radiation via inhibition of nonhomologous end joining. Mol Cancer Res. 2005;3(5):277–285. doi:10.1158/1541-7786.MCR-04-0032
  • Page P, Yang LX. Novel chemoradiosensitizers for cancer therapy. Anticancer Res. 2010;30(9):3675–3682.
  • Arcangeli S, Jereczek-Fossa BA, Alongi F, et al. Combination of novel systemic agents and radiotherapy for solid tumors - Part II: an AIRO (Italian association of radiotherapy and clinical oncology) overview focused on treatment toxicity. Crit Rev Oncol Hematol. 2019;134:104–119. doi:10.1016/j.critrevonc.2018.11.006
  • Wang S, Long S, Wu W. Application of traditional Chinese medicines as personalized therapy in human cancers. Am J Chin Med. 2018;46(5):953–970. doi:10.1142/S0192415X18500507
  • Kandanur SGS, Tamang N, Golakoti NR, Nanduri S. Andrographolide: a natural product template for the generation of structurally and biologically diverse diterpenes. Eur J Med Chem. 2019;176:513–533. doi:10.1016/j.ejmech.2019.05.022
  • Khan I, Mahfooz S, Ansari IA. Antiproliferative and Apoptotic Properties of Andrographolide Against Human Colon Cancer DLD1 Cell Line. Endocr Metab Immune Disord Drug Targets. 2020;20(6):930–942. doi:10.2174/1871530319666191125111920
  • Khan I, Mahfooz S, Faisal M, Alatar AA, Ansari IA. Andrographolide induces apoptosis and cell cycle arrest through inhibition of aberrant hedgehog signaling pathway in colon cancer cells. Nutr Cancer. 2020;73:1–19.
  • Yuan M, Meng W, Liao W, Lian S. Andrographolide antagonizes TNF-α-induced IL-8 via inhibition of NADPH Oxidase/ROS/NF-κB and Src/MAPKs/AP-1 axis in human colorectal cancer HCT116 cells. J Agric Food Chem. 2018;66(20):5139–5148. doi:10.1021/acs.jafc.8b00810
  • Luo W, Jia L, Zhang JW, Wang DJ, Ren Q, Zhang W. Andrographolide against lung cancer-new pharmacological insights based on high-throughput metabolomics analysis combined with network pharmacology. Front Pharmacol. 2021;12:596652. doi:10.3389/fphar.2021.596652
  • Peng Y, Wang Y, Tang N, et al. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. J Exp Clin Cancer Res. 2018;37(1):248. doi:10.1186/s13046-018-0926-9
  • Li J, Zhang C, Jiang H, Cheng J. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth. Onco Targets Ther. 2015;8:427–435. doi:10.2147/OTT.S76116
  • Mao W, He P, Wang W, Wu X, Wei C. Andrographolide sensitizes Hep-2 human laryngeal cancer cells to carboplatin-induced apoptosis by increasing reactive oxygen species levels. Anticancer Drugs. 2019;30(7):e0774. doi:10.1097/CAD.0000000000000774
  • Su M, Qin B, Liu F, Chen Y, Zhang R. Andrographolide enhanced 5-fluorouracil-induced antitumor effect in colorectal cancer via inhibition of c-MET pathway. Drug Des Devel Ther. 2017;11:3333–3341. doi:10.2147/DDDT.S140354
  • Wang W, Guo W, Li L, et al. Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression. Biochem Pharmacol. 2016;121:8–17. doi:10.1016/j.bcp.2016.09.024
  • Yuwen D, Mi S, Ma Y, et al. Andrographolide enhances cisplatin-mediated anticancer effects in lung cancer cells through blockade of autophagy. Anticancer Drugs. 2017;28(9):967–976. doi:10.1097/CAD.0000000000000537
  • Li X, Tian R, Liu L, et al. Andrographolide enhanced radiosensitivity by downregulating glycolysis via the inhibition of the PI3K-Akt-mTOR signaling pathway in HCT116 colorectal cancer cells. J Int Med Res. 2020;48(8):300060520946169. doi:10.1177/0300060520946169
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Databaseissue):D991–D995. doi:10.1093/nar/gks1193
  • Athar A, Fullgrabe A, George N, et al. ArrayExpress update - from bulk to single-cell expression data. Nucleic Acids Res. 2019;47(D1):D711–D715. doi:10.1093/nar/gky964
  • Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–883. doi:10.1093/bioinformatics/bts034
  • Sjostedt E, Zhong W, Fagerberg L, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020;367:6482. doi:10.1126/science.aay5947
  • Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–W102. doi:10.1093/nar/gkx247
  • Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. doi:10.1186/1758-2946-6-13
  • Smith JJ, Strombom P, Chow OS, et al. Assessment of a watch-and-wait strategy for rectal cancer in patients with a complete response after neoadjuvant therapy. JAMA Oncol. 2019;5(4):e185896. doi:10.1001/jamaoncol.2018.5896
  • He RQ, Li JD, Du XF, et al. LPCAT1 overexpression promotes the progression of hepatocellular carcinoma. Cancer Cell Int. 2021;21(1):442. doi:10.1186/s12935-021-02130-4
  • Huang WJ, He WY, Li JD, et al. Clinical significance and molecular mechanism of angiotensin-converting enzyme 2 in hepatocellular carcinoma tissues. Bioengineered. 2021;12(1):4054–4069. doi:10.1080/21655979.2021.1952791
  • Freije JP, Fueyo A, Uria JA, et al. Human Zn-alpha 2-glycoprotein: complete genomic sequence, identification of a related pseudogene and relationship to class I major histocompatibility complex genes. Genomics. 1993;18(3):575–587. doi:10.1016/S0888-7543(05)80359-3
  • Xiao X, Li H, Qi X, et al. Zinc alpha2 glycoprotein alleviates palmitic acid-induced intracellular lipid accumulation in hepatocytes. Mol Cell Endocrinol. 2017;439:155–164. doi:10.1016/j.mce.2016.06.003
  • Tian M, Liang Z, Liu R, et al. Effects of sitagliptin on circulating zinc-alpha2-glycoprotein levels in newly diagnosed type 2 diabetes patients: a randomized trial. Eur J Endocrinol. 2016;174(2):147–155. doi:10.1530/EJE-15-0637
  • Liu Y, Wang T, Liu X, et al. Neuronal zinc-alpha2-glycoprotein is decreased in temporal lobe epilepsy in patients and rats. Neuroscience. 2017;357:56–66. doi:10.1016/j.neuroscience.2017.05.043
  • Hu Y, Hosseini A, Kauwe JS, et al. Identification and validation of novel CSF biomarkers for early stages of Alzheimer’s disease. Proteomics Clin Appl. 2007;1(11):1373–1384. doi:10.1002/prca.200600999
  • Sorensen-Zender I, Bhayana S, Susnik N, et al. Zinc-alpha2-glycoprotein exerts antifibrotic effects in kidney and heart. J Am Soc Nephrol. 2015;26(11):2659–2668. doi:10.1681/ASN.2014050485
  • Xu MY, Chen R, Yu JX, Liu T, Qu Y, Lu LG. AZGP1 suppresses epithelial-to-mesenchymal transition and hepatic carcinogenesis by blocking TGFbeta1-ERK2 pathways. Cancer Lett. 2016;374(2):241–249. doi:10.1016/j.canlet.2016.02.025
  • Tian H, Ge C, Zhao F, et al. Downregulation of AZGP1 by Ikaros and histone deacetylase promotes tumor progression through the PTEN/Akt and CD44s pathways in hepatocellular carcinoma. Carcinogenesis. 2017;38(2):207–217. doi:10.1093/carcin/bgw125
  • Liu J, Han H, Fan Z, et al. AZGP1 inhibits soft tissue sarcoma cells invasion and migration. BMC Cancer. 2018;18(1):89. doi:10.1186/s12885-017-3962-5
  • Tang H, Wu Y, Qin Y, et al. Reduction of AZGP1 predicts poor prognosis in esophageal squamous cell carcinoma patients in Northern China. Onco Targets Ther. 2017;10:85–94. doi:10.2147/OTT.S113932
  • Poropatich K, Paunesku T, Zander A, et al. Elemental Zn and its binding protein Zinc-alpha2-Glycoprotein are elevated in HPV-positive oropharyngeal squamous cell carcinoma. Sci Rep. 2019;9(1):16965. doi:10.1038/s41598-019-53268-1
  • Bruce HM, Stricker PD, Gupta R, et al. Loss of AZGP1 as a superior predictor of relapse in margin-positive localized prostate cancer. Prostate. 2016;76(16):1491–1500. doi:10.1002/pros.23233
  • Brooks JD, Wei W, Pollack JR, et al. Loss of expression of AZGP1 is associated with worse clinical outcomes in a multi-institutional radical prostatectomy cohort. Prostate. 2016;76(15):1409–1419. doi:10.1002/pros.23225
  • Burdelski C, Kleinhans S, Kluth M, et al. Reduced AZGP1 expression is an independent predictor of early PSA recurrence and associated with ERG-fusion positive and PTEN deleted prostate cancers. Int J Cancer. 2016;138(5):1199–1206. doi:10.1002/ijc.29860
  • Ji M, Li W, He G, et al. Zinc-alpha2-glycoprotein 1 promotes EMT in colorectal cancer by filamin A mediated focal adhesion pathway. J Cancer. 2019;10(22):5557–5566. doi:10.7150/jca.35380
  • Yu W, Ling J, Yu H, Du J, Liu T. AZGP1 suppresses the process of colorectal cancer after upregulating FASN expression via mTOR signal pathway. Gen Physiol Biophys. 2020;39(3):239–248. doi:10.4149/gpb_2019061
  • Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: current achievements and future perspectives. Eur J Med Chem. 2021;224:113710. doi:10.1016/j.ejmech.2021.113710
  • Khan I, Khan F, Farooqui A, Ansari IA. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr Cancer. 2018;70(5):787–803. doi:10.1080/01635581.2018.1470649
  • Khan I, Mahfooz S, Saeed M, Ahmad I, Ansari IA. Andrographolide inhibits proliferation of colon cancer SW-480 cells via downregulating notch signaling pathway. Anticancer Agents Med Chem. 2021;21(4):487–497. doi:10.2174/1871520620666200717143109
  • Dai L, Wang G, Pan W. Andrographolide inhibits proliferation and metastasis of SGC7901 gastric cancer cells. Biomed Res Int. 2017;2017:6242103. doi:10.1155/2017/6242103
  • Yang T, Yao S, Zhang X, Guo Y. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways. Drug Des Devel Ther. 2016;10:1389–1397. doi:10.2147/DDDT.S94983
  • Yang S, Evens AM, Prachand S, et al. Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone andrographolide, the active component of Andrographis paniculata. Clin Cancer Res. 2010;16(19):4755–4768. doi:10.1158/1078-0432.CCR-10-0883
  • Mir H, Kapur N, Singh R, Sonpavde G, Lillard JW, Singh S. Andrographolide inhibits prostate cancer by targeting cell cycle regulators, CXCR3 and CXCR7 chemokine receptors. Cell Cycle. 2016;15(6):819–826. doi:10.1080/15384101.2016.1148836
  • Lee YC, Lin HH, Hsu CH, Wang CJ, Chiang TA, Chen JH. Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur J Pharmacol. 2010;632(1–3):23–32. doi:10.1016/j.ejphar.2010.01.009
  • Banerjee M, Chattopadhyay S, Choudhuri T, et al. Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line. J Biomed Sci. 2016;23:40. doi:10.1186/s12929-016-0257-0
  • Chen W, Feng L, Nie H, Zheng X. Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin D-mediated mitochondrial permeability transition pore. Carcinogenesis. 2012;33(11):2190–2198. doi:10.1093/carcin/bgs264
  • Wang LJ, Zhou X, Wang W, et al. Andrographolide inhibits oral squamous cell carcinogenesis through NF-kappaB inactivation. J Dent Res. 2011;90(10):1246–1252. doi:10.1177/0022034511418341
  • Gao H, Wang J. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-kappaB signaling pathway. Mol Med Rep. 2016;13(2):1827–1832. doi:10.3892/mmr.2015.4703
  • Thingale AD, Shaikh KS, Channekar PR, Galgatte UC, Chaudhari PD, Bothiraja C. Enhanced hepatoprotective activity of andrographolide complexed with a biomaterial. Drug Deliv. 2015;22(1):117–124. doi:10.3109/10717544.2013.871602
  • Yuan H, Sun B, Gao F, Lan M. Synergistic anticancer effects of andrographolide and paclitaxel against A549 NSCLC cells. Pharm Biol. 2016;54(11):2629–2635. doi:10.1080/13880209.2016.1176056
  • Wang ZM, Kang YH, Yang X, et al. Andrographolide radiosensitizes human esophageal cancer cell line ECA109 to radiation in vitro. Dis Esophagus. 2016;29(1):54–61. doi:10.1111/dote.12255