166
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Association of CYP7A1 and CYP2E1 Polymorphisms with Type 2 Diabetes in the Chinese Han Populations

, , , &
Pages 843-855 | Received 24 Mar 2022, Accepted 30 Aug 2022, Published online: 21 Sep 2022

References

  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843. doi:10.1016/j.diabres.2019.107843
  • Tang K, Li X, Xing Q, et al. Genetic polymorphism analysis of cytochrome P4502E1 (CYP2E1) in Chinese Han populations from four different geographic areas of Mainland China. Genomics. 2010;95(4):0–229.
  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–136. doi:10.1016/S0140-6736(09)62124-3
  • Semiz S, Dujic T, Ostanek B, et al. Analysis of CYP2C9*2, CYP2C19*2, and CYP2D6*4 polymorphisms in patients with type 2 diabetes mellitus. Bosn J Basic Med Sci. 2010;10(4):287–291. doi:10.17305/bjbms.2010.2662
  • Yamada Y, Matsuo H, Watanabe S, et al. Association of a polymorphism of CYP3A4 with type 2 diabetes mellitus. Int J Mol Med. 2007;20(5):703–707.
  • Wang CP, Hung W-C, Yu T-H, et al. Genetic variation in the G-50T polymorphism of the cytochrome P450 epoxygenase CYP2J2 gene and the risk of younger onset type 2 diabetes among Chinese population: potential interaction with body mass index and family history. Exp Clin Endocrinol Diabetes. 2010;118(6):346–352. doi:10.1055/s-0029-1243604
  • Chiang JY. Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am J Physiol Gastrointest Liver Physiol. 2003;284(3):G349–56. doi:10.1152/ajpgi.00417.2002
  • Li T, Kong X, Owsley E, et al. Insulin regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes: roles of forkhead box O1 and sterol regulatory element-binding protein 1c. J Biol Chem. 2006;281(39):28745–28754. doi:10.1074/jbc.M605815200
  • Gerhard GS, Styer AM, Wood GC, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care. 2013;36(7):1859–1864. doi:10.2337/dc12-2255
  • Hansen M, Sonne DP, Knop FK. Bile acid sequestrants: glucose-lowering mechanisms and efficacy in type 2 diabetes. Curr Diab Rep. 2014;14(5):482. doi:10.1007/s11892-014-0482-4
  • Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–191. doi:10.1152/physrev.00010.2008
  • Hofman MK, Princen H, Zwinderman A, et al. Genetic variation in the rate-limiting enzyme in cholesterol catabolism (cholesterol 7α-hydroxylase) influences the progression of atherosclerosis and risk of new clinical events. Clin Sci. 2005;108(6):539–545. doi:10.1042/CS20040339
  • Jiang ZY, Han TQ, Suo GJ, et al. Polymorphisms at cholesterol 7α-hydroxylase, apolipoproteins B and E and low density lipoprotein receptor genes in patients with gallbladder stone disease. World J Gastroenterol. 2004;10(10):1508–1512. doi:10.3748/wjg.v10.i10.1508
  • Hagiwara T, Kono S, Yin G. Genetic polymorphism in cytochrome P 450 7A1 and risk of colorectal cancer: the Fukuoka colorectal cancer study. Cancer Res. 2005;65(7):2979–2982. doi:10.1158/0008-5472.CAN-04-3872
  • Ueda N, Maehara Y, Tajima O, et al. Genetic polymorphisms of cyclooxygenase-2 and colorectal adenoma risk: the self defense forces health study. Cancer Sci. 2010;99(3):576–581.
  • Arin E, Arslan Ş, Bozcaarmutlu A, et al. Effects of diabetes on rabbit kidney and lung CYP2E1 and CYP2B4 expression and drug metabolism and potentiation of carcinogenic activity of N-nitrosodimethylamine in kidney and lung. Food Chem Toxicol. 45(1):0–118. doi:10.2341/19-251-L
  • Doroshyenko O, Fuhr U, Kunz D, et al. in vivo role of cytochrome P450 2E1 and glutathione-s-transferase activity for acrylamide toxicokinetics in humans. Cancer Epidemiol Biomarkers Prev. 2009;18(2):433–443. doi:10.1158/1055-9965.EPI-08-0832
  • Wang Z, Hall SD, Maya JF, et al. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. Br J Clin Pharmacol. 2003;55(1):77–85. doi:10.1046/j.1365-2125.2003.01731.x
  • Arinç E, Arslan S, Adali O. Differential effects of diabetes on CYP2E1 and CYP2B4 proteins and associated drug metabolizing enzyme activities in rabbit liver. Arch Toxicol. 2005;79(8):427–433. doi:10.1007/s00204-005-0654-8
  • Barry KH, Zhang Y, Lan Q, et al. Genetic variation in metabolic genes, occupational solvent exposure, and risk of non-Hodgkin lymphoma. Am J Epidemiol. 2011;173(4):404–413. doi:10.1093/aje/kwq360
  • Huo R, Tang K, Wei Z, et al. Genetic polymorphisms in CYP2E1: association with schizophrenia susceptibility and risperidone response in the Chinese Han population. PLoS One. 2012;7(5):e34809. doi:10.1371/journal.pone.0034809
  • American Diabetes Association. 2. classification and diagnosis of diabetes: standards of medical care in Diabetes—2022. Diabetes Care. 2022;45(Suppl Supplement_1):S17–s38. doi:10.2337/dc22-S002
  • Yates A, Akanni W, Amode MR, et al. Ensembl 2016. Nucleic Acids Res. 2016;44(D1):D710–6. doi:10.1093/nar/gkv1157
  • Jin T, Wang L, He X, et al. Association between DIO2 polymorphism and the risk of Kashin–Beck disease in the Tibetan population. J Gene Med. 2019;21(10):e3123. doi:10.1002/jgm.3123
  • Dai ZJ, Liu X-H, Ma Y-F, et al. Association between single nucleotide polymorphisms in DNA polymerase kappa gene and breast cancer risk in Chinese Han population: a STROBE-compliant observational study. Medicine. 2016;95(2):e2466. doi:10.1097/MD.0000000000002466
  • Ren HT, Li Y-M, Wang X-J, et al. PD-1 rs2227982 polymorphism is associated with the decreased risk of breast cancer in northwest Chinese women. Medicine. 2016;95(21):e3760. doi:10.1097/MD.0000000000003760
  • Galavi H, Mollashahee‐Kohkan F, Saravani R, et al. HHEX gene polymorphisms and type 2 diabetes mellitus: a case-control report from Iran. J Cell Biochem. 2019;120(10):16445–16451. doi:10.1002/jcb.28788
  • Galavi H, Noorzehi N, Saravani R, et al. Association study of SREBF-2 gene polymorphisms and the risk of type 2 diabetes in a sample of Iranian population. Gene. 2018;660:145–150. doi:10.1016/j.gene.2018.03.080
  • Sargazi S, Heidari Nia M, Saravani R, et al. IGF2BP2 polymorphisms as genetic biomarkers for either schizophrenia or type 2 diabetes mellitus: a case-control study. Gene Rep. 2020;20:100680. doi:10.1016/j.genrep.2020.100680
  • Jahantigh D, Mirani Sargazi F, Sargazi S, et al. Relationship between functional miR-143/145 cluster variants and susceptibility to type 2 diabetes mellitus: a preliminary case-control study and bioinformatics analyses. Endocr Res. 2021;46(3):129–139. doi:10.1080/07435800.2021.1914079
  • Sadeghi MB, Nakhaee A, Saravani R, et al. SIRT1 functional polymorphisms (rs12778366, rs3758391) as genetic biomarkers of susceptibility to type 2 diabetes mellitus in Iranians: a case-control study and computational analysis. Int J Diabetes Dev Ctries. 2021;41(3):447–455. doi:10.1007/s13410-020-00898-1
  • Sargazi S, Heidari Nia M, Sargazi FM, et al. SNPs in the 3’-untranslated region of SLC30A8 confer risk of type 2 diabetes mellitus in a south-east Iranian population: evidences from case-control and bioinformatics studies. J Diabetes Metab Disord. 2020;19(2):979–988. doi:10.1007/s40200-020-00590-5
  • Sadeghi MB, Nakhaee A, Saravani R, et al. Significant association of LXRβ (NR1H2) polymorphisms (rs28514894, rs2303044) with type 2 diabetes mellitus and laboratory characteristics. J Diabetes Metab Disord. 2021;20(1):261–270. doi:10.1007/s40200-021-00740-3
  • Sargazi S, Ravanbakhsh M, Nia MH, et al. Association of polymorphisms within HOX transcript antisense RNA (HOTAIR) with type 2 diabetes mellitus and laboratory characteristics: a preliminary case-control study. Dis Markers. 2022;2022:4327342. doi:10.1155/2022/4327342
  • Adeyemo A, Bentley AR, Meilleur KG, et al. Transferability and fine mapping of genome-wide associated loci for lipids in African Americans. BMC Med Genet. 2012;13(1):88. doi:10.1186/1471-2350-13-88
  • King H, Rewers M. Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Diabetes Care. 1993;16(1):157–177. doi:10.2337/diacare.16.1.157
  • Nagai M, Sakata K, Yanagawa H, et al. [Prevalence estimates for non-insulin dependent diabetes mellitus (NIDDM) in Japan from National Survey of Circulatory Disorders 1990 data]. Nihon Koshu Eisei Zasshi. 1994;41(8):720. Japanese.
  • Eriksson JG, Forsén T, Tuomilehto J, et al. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia. 2003;46(2):190–194. doi:10.1007/s00125-002-1012-5
  • Sachdev HS, et al. Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood in the New Delhi birth cohort. Am J Clin Nutr. 2005;82(2):456–466.
  • LeRoith D, Biessels GJ, Braithwaite SS, et al. Treatment of diabetes in older adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2019;104(5):1520–1574. doi:10.1210/jc.2019-00198