43
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

16S rRNA Gene Sequencing of Gut Microbiota in Rheumatoid Arthritis Treated with 99Tc-MDP

ORCID Icon, , , , & ORCID Icon
Pages 237-249 | Received 06 Dec 2023, Accepted 27 Apr 2024, Published online: 23 May 2024

References

  • Aziz AUR, Farid S, Qin K, et al. PIM kinases and their relevance to the PI3K/AKT/mTOR pathway in the regulation of ovarian cancer. Biomolecules. 2018;8(1):7. doi:10.3390/biom8010007
  • Miyauchi E, Shimokawa C, Steimle A, et al. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol. 2023;23(1):9–23. doi:10.1038/s41577-022-00727-y
  • Wolte M, Grant ET, Boudaud M, et al. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol. 2021;18(12):885–902. doi:10.1038/s41575-021-00512-7
  • Zaiss MM, Joyce Wu H-J, Mauro D, et al. The gut-joint axis in rheumatoid arthritis. Nat Rev Rheumatol. 2021;17(4):224–237. doi:10.1038/s41584-021-00585-3
  • Badsha H. Role of diet in influencing rheumatoid arthritis disease activity. Open Rheumatol J. 2018;12:19–28. doi:10.2174/1874312901812010019
  • Asquith M, Sternes PR, Costello M-E, et al. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. 2019;71(10):1642–1650. doi:10.1002/art.40917
  • Zhao Q, Maynard CL. Mucus, commensals, and the immune system. Gut Microbes. 2022;14(1):2041342. doi:10.1080/19490976.2022.2041342
  • Yuan L, Zhang S-X, Yin X-F, et al. The gut microbiota and its relevance to peripheral lymphocyte subpopulations and cytokines in patients with rheumatoid arthritis. J Immunol Res. 2021;2021:6665563. doi:10.1155/2021/6665563
  • Kang Y, Cai Y, Yang Y, et al. The gut microbiome and hepatocellular carcinoma: implications for early diagnostic biomarkers and novel therapies. Liver Cancer. 2021;11(2):113–125. doi:10.1159/000521358
  • Mu R, Liang J, Sun L, et al. A randomized multicenter clinical trial of 99 Tc-methylene diphosphonate in treatment of rheumatoid arthritis. Int J Rheum Dis. 2018;21(1):161–169. doi:10.1111/1756-185X.12934
  • Chen J, Lan Y, Yue H, et al. 99Tc-MDP-induced human osteoblast proliferation, differentiation and expression of osteoprotegerin. Mol Med Rep. 2017;16(2):1801–1809. doi:10.3892/mmr.2017.6839
  • Wu Q, Ni Y, Yang Q, et al. 99 Tc-MDP treatment for the therapy of rheumatoid arthritis, choroidal neovascularisation and Graves’ ophthalmopathy. Biomed Rep. 2016;4(4):400–402. doi:10.3892/br.2016.609
  • Wu Y-G, Ma Q-L, Liu G-F, et al. Effect of 99Tc-MDP on cytokine production by peripheral blood mononuclear cells of patients with rheumatoid arthritis. Hunan Yi Ke Da Xue Xue Bao. 2002;27(2):173–175.
  • Su D, Shen M, Gu B, et al. (99) Tc-methylene diphosphonate improves rheumatoid arthritis disease activity by increasing the frequency of peripheral γδ T cells and CD4(+) CD25(+) Foxp3(+) Tregs. Int J Rheum Dis. 2016;19(6):583–593. doi:10.1111/1756-185X.12292
  • Fu Q, Feng P, Sun L-Y, et al. A double-blind, double-dummy, randomized controlled, multicenter trial of 99Tc-methylene diphosphonate in patients with moderate to severe rheumatoid arthritis. Chin Med J. 2021;134(12):1457–1464. doi:10.1097/CM9.0000000000001527
  • Nayak RR, Alexander M, Deshpande I, et al. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe. 2021;29(3):362–377.e11. doi:10.1016/j.chom.2020.12.008
  • Artacho A, Isaac S, Nayak R, et al. The pretreatment gut microbiome is associated with lack of response to methotrexate in new-onset rheumatoid arthritis. Arthritis Rheumatol. 2021;73(6):931–942. doi:10.1002/art.41622
  • Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–2581. doi:10.1002/art.27584
  • England BR, Tiong BK, Bergman MJ, et al. 2019 Update of the American college of rheumatology recommended rheumatoid arthritis disease activity measures. Arthritis Care Res. 2019;71(12):1540–1555. doi:10.1002/acr.24042
  • Callahan BJ, Mcmurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference fromIllumina amplicon data. Nature Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869
  • Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnol. 2019;37(8):852–857. doi:10.1038/s41587-019-0209-9
  • Chao A, Bunge J. Estimating the number of species in a stochastic abundance model. Biometrics. 2002;58(3):531–539. doi:10.1111/j.0006-341x.2002.00531.x
  • McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–2219. doi:10.1056/NEJMra1004965
  • Edilova MI, Akram A, Abdul-Sater AA. 9 Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021;44(2):172–182. doi:10.1016/j.bj.2020.06.010
  • Li Y, Cai M, Zhang R, et al. Investigating the preventive effects of 99tc-methylene diphosphonate on a glucocorticoid-induced osteoporosis rabbit model. Curr Top Med Chem. 2021;21(26):2425–2433. doi:10.2174/1568026621666210804114744
  • Scher JU, Nayak RR, Ubeda C, et al. 9 Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat Rev Rheumatol. 2020;16(5):282–292. doi:10.1038/s41584-020-0395-3
  • Mei L, Yang Z, Zhang X, et al. Sustained drug treatment alters the gut microbiota in rheumatoid arthritis. Front Immunol. 2021;12:704089. doi:10.3389/fimmu.2021.704089
  • Kishikawa T, Maeda Y, Nii T, et al. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis. 2020;79(1):103–111. doi:10.1136/annrheumdis-2019-215743
  • van Delft MAM, van der Woude D, Toes REM, et al. Secretory form of rheumatoid arthritis-associated autoantibodies in serum are mainly of the IgM isotype, suggesting a continuous reactivation of autoantibody responses at mucosal surfaces. Ann Rheum Dis. 2019;78(1):146–148. doi:10.1136/annrheumdis-2018-213724
  • Pianta A, Arvikar S, Strle K, et al. Evidence of the immune relevance of prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69(5):964–975. doi:10.1002/art.40003
  • Hanchi H, Mottawea W, Sebei K, et al. The genus enterococcus: between probiotic potential and safety concerns-an update. Front Microbiol. 2018;9:1791. doi:10.3389/fmicb.2018.01791
  • Rovenský J, Svík K, Matha V, et al. Combination treatment of rat adjuvant-induced arthritis with methotrexate, probiotic bacteria enterococcus faecium, and selenium. Ann N Y Acad Sci. 2005;1051:570–581. doi:10.1196/annals.1361.101
  • Yu D, Du J, Pu X, et al. The gut microbiome and metabolites are altered and interrelated in patients with rheumatoid arthritis. Front Cell Infect Microbiol. 2022;11:763507. doi:10.3389/fcimb.2021.763507
  • Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. doi:10.1038/nm.3914
  • Rasouli-Saravani A, Jahankhani K, Moradi S, et al. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother. 2023;162:114620. doi:10.1016/j.biopha.2023.114620
  • Attur M, Scher JU, Abramson SB, et al. Role of intestinal dysbiosis and nutrition in rheumatoid arthritis. Cells. 2022;11(15):2436. doi:10.3390/cells11152436
  • Yao Y, Cai X, Zheng Y, et al. Short-chain fatty acids regulate B cells differentiation via the FFA2 receptor to alleviate rheumatoid arthritis. Br J Pharmacol. 2022;179(17):4315–4329. doi:10.1111/bph.15852
  • Dürholz K, Hofmann J, Iljazovic A, et al. Dietary short-term fiber interventions in arthritis patients increase systemic SCFA levels and regulate inflammation. Nutrients. 2020;12(10):3207. doi:10.3390/nu12103207
  • Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun. 2018;9(1):55. doi:10.1038/s41467-017-02490-4
  • Stoll ML, Kumar R, Lefkowitz EJ, et al. Fecal metabolomics in pediatric spondyloarthritis implicate decreased metabolic diversity and altered tryptophan metabolism as pathogenic factors. Genes Immun. 2016;17(7):400–405. doi:10.1038/gene.2016.38
  • Kang KY, Lee SH, Jung SM, et al. Downregulation of tryptophan-related metabolomic profile in rheumatoid arthritis synovial fluid. J Rheumatol. 2015;42(11):2003–2011. doi:10.3899/jrheum.141505
  • Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716–724. doi:10.1016/j.chom.2018.05.003
  • Rosser EC, Piper CJM, Matei DE, et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab. 2020;31(4):837–851.e10. doi:10.1016/j.cmet.2020.03.003
  • Liu X, Zou Q, Zeng B, et al. Analysis of fecal Lactobacillus community structure in patients with early rheumatoid arthritis. Curr Microbiol. 2013;67(2):170–176. doi:10.1007/s00284-013-0338-1
  • Gomez A, Luckey D, Yeoman CJ, et al. Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible 0401 mice but not arthritis-resistant 0402 mice. PLoS One. 2012;7(4):e36095. doi:10.1371/journal.pone.0036095
  • Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202. doi:10.7554/eLife.01202