900
Views
1
CrossRef citations to date
0
Altmetric
PERSPECTIVES

Overcoming Infections Including COVID-19, by Maintaining Circulating 25(OH)D Concentrations Above 50 ng/mL

ORCID Icon
Pages 37-60 | Received 22 Jul 2022, Accepted 29 Nov 2022, Published online: 16 Dec 2022

References

  • Wimalawansa SJ. Global epidemic of coronavirus—COVID-19: what can we do to minimize risks? European J. Biomed Pharma Sci. 2020;7(3):432–438.
  • Wang L, Berger NA, Kaelber DC, et al. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron. medRxiv. 2022. doi:10.1101/2021.12.30.21268495
  • Qi ZH, Bei ZF, Teng S, et al. Clinical features of 19 children infected with the Omicron variant of severe acute respiratory syndrome coronavirus 2 in Hangzhou. China Zhongguo Dang Dai Er Ke Za Zhi. 2022;24(10):1092–1097.
  • Wang X, Chang H, Tian H, et al. Epidemiological and clinical features of SARS-CoV-2 infection in children during the outbreak of Omicron variant in Shanghai, March 7- 31,2022. Influenza Other Respir Viruses. 2022;16(6):1059–1065. doi:10.1111/irv.13044
  • Suryawanshi RK, Chen IP, Ma T, et al. Limited cross-variant immunity after infection with the SARS-CoV-2 Omicron variant without vaccination. medRxiv. 2022. doi:10.1101/2022.01.13.22269243
  • Ledford H. How severe are Omicron infections? Nature. 2021;600(7890):577–578. doi:10.1038/d41586-021-03794-8
  • Torjesen I. Covid-19: omicron variant is linked to steep rise in hospital admissions of very young children. BMJ. 2022;376:o110. doi:10.1136/bmj.o110
  • Chen KK, Huang DT, Huang LM. SARS-CoV-2 variants - evolution, Spike protein, and vaccines. Biomed J. 2022;45:573–579. doi:10.1016/j.bj.2022.04.006
  • Shrestha LB, Foster C, Rawlinson W, et al. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission. Rev Med Virol. 2022;32(5):e2381. doi:10.1002/rmv.2381
  • Zhou H, Dcosta BM, Landau NR, et al. Resistance of SARS-CoV-2 Omicron BA.1 and BA.2 Variants to vaccine-elicited sera and therapeutic monoclonal antibodies. Viruses. 2022;14(6):1334. doi:10.3390/v14061334
  • Armitage R, Nellums LB. COVID-19 and the consequences of isolating the elderly. Lancet Public Health. 2020;5(5):e256. doi:10.1016/S2468-2667(20)30061-X
  • Reyes-Ortiz CA, Williams C, Westphal C. Comparison of early versus late palliative care consultation in end-of-life care for the hospitalized frail elderly patients. Am J Hosp Palliat Care. 2015;32(5):516–520. doi:10.1177/1049909114530183
  • SeyedAlinaghi S, Mehrtak M, MohsseniPour M, et al. Genetic susceptibility of COVID-19: a systematic review of current evidence. Eur J Med Res. 2021;26(1):46. doi:10.1186/s40001-021-00516-8
  • Barrea LV, Grant L, Frias-Toral WB, et al. Vitamin D: a role also in long COVID-19? Nutrients. 2022;14:1625. doi:10.3390/nu14081625
  • Pretorius E, Venter C, Laubscher GJ, et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022;21(1):148. doi:10.1186/s12933-022-01579-5
  • Thapa Magar S, Lokhandwala HI, Batool S, et al. A Systematic Review of neurological manifestations of COVID-19. Cureus. 2022;14(8):e28309. doi:10.7759/cureus.28309
  • Sanabria-Diaz G, Etter MM, Melie-Garcia L, et al. Brain cortical alterations in COVID-19 patients with neurological symptoms. Front Neurosci. 2022;16:992165. doi:10.3389/fnins.2022.992165
  • Boucher BJ. Vitamin D deficiency in British South Asians, a persistent but avoidable problem associated with many health risks (including rickets, T2DM, CVD, COVID-19 and pregnancy complications): the case for correcting this deficiency. Endocr Connect. 2022;11(12). doi:10.1530/EC-22-0234
  • GAO-21-319. Operation warp speed: accelerated COVID-19 vaccine development status and efforts to address manufacturing challenges. Accelerated COVID-19 Vaccine Development Status and Efforts to Address Manufacturing Challenges. U.S. GAO; 2020. Available from: www.gao.gov/products/gao-21-319. Accessed November 29, 2022.
  • Wolfl-Duchek M, Bergmann F, Jorda A, et al. Sensitivity and specificity of SARS-CoV-2 rapid antigen detection tests using oral, anterior nasal, and nasopharyngeal swabs: a diagnostic accuracy study. Microbiol Spectr. 2022;10(1):e0202921. doi:10.1128/spectrum.02029-21
  • Zhan Z, Li J, Cheng ZJ. Rapid antigen test combine with nucleic acid detection: a better strategy for COVID-19 screening at points of entry. J Epidemiol Glob Health. 2022;12(1):13–15. doi:10.1007/s44197-021-00030-4
  • Islamoska S, Petersen JH, Benfield T, et al. Socioeconomic and demographic risk factors in COVID-19 hospitalization among immigrants and ethnic minorities. Eur J Public Health. 2022;32(2):302–310. doi:10.1093/eurpub/ckab186
  • Aldridge RW, Lewer D, Katikireddi SV, et al. Black, Asian and Minority Ethnic groups in England are at increased risk of death from COVID-19: indirect standardisation of NHS mortality data. Wellcome Open Res. 2020;5:88. doi:10.12688/wellcomeopenres.15922.2
  • Holmes L, Enwere M, Williams J, et al. Black-white risk differentials in COVID-19 (SARS-COV2) transmission, mortality and case fatality in the United States: translational epidemiologic perspective and Challenges. Int J Environ Res Public Health. 2020;17(12):4322. doi:10.3390/ijerph17124322
  • Roizen JD, Long C, Casella A, et al. Obesity decreases hepatic 25-hydroxylase activity causing low serum 25-hydroxyvitamin D. J Bone Miner Res. 2019;34(6):1068–1073. doi:10.1002/jbmr.3686
  • Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–693. doi:10.1093/ajcn/72.3.690
  • Walsh JB, McCartney DM, Laird É, et al. Understanding a low vitamin D state in the context of COVID-19. Front Pharmacol. 2022;13:835480. doi:10.3389/fphar.2022.835480
  • Phommasone K, Xaiyaphet X, Garcia-Rivera JA, et al. A case-control study of the causes of acute respiratory infection among hospitalized patients in Northeastern Laos. Sci Rep. 2022;12(1):939. doi:10.1038/s41598-022-04816-9
  • Ekwaru JP, Zwicker JD, Holick MF, et al. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS One. 2014;9(11):e111265. doi:10.1371/journal.pone.0111265
  • Wimalawansa SJ. Biology of Vitamin D. J Steroids Horm Sci. 2019;198(1):1–8.
  • Vieth R. Vitamin D supplementation: cholecalciferol, calcifediol, and calcitriol. Eur J Clin Nutr. 2020;74(11):1493–1497. doi:10.1038/s41430-020-0697-1
  • Tieu S, Charchoglyan A, Lauri Wagter-Lesperance LW, et al. Immunoceuticals: harnessing their immunomodulatory potential to promote health and wellness. Nutrients. 2022;14:4075. doi:10.3390/nu14194075
  • Patel HM, Khandwala S, Somani P, et al. Determining whether ethnic minorities with severe obesity face a disproportionate risk of serious disease and death from COVID-19: outcomes from a Southern California-based retrospective cohort study. BMJ Open. 2022;12(6):e059132. doi:10.1136/bmjopen-2021-059132
  • Lucock M, Thota R, Garg M, et al. Early lifecycle UV-exposure calibrates adult vitamin D metabolism: evidence for a developmentally originated vitamin D homeostat that may alter related adult phenotypes. Am J Hum Biol. 2019;31(4):e23272. doi:10.1002/ajhb.23272
  • Del Giudice M, Indolfi M C, Strisciuglio C, Vitamin D: immunomodulatory aspects. Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, Rome, Italy; 2017:S86–S88.
  • Wimalawansa SJ. Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology. 2019;8(2):30.
  • Chlon TM, Taffany DA, Welsh J, et al. Retinoids modulate expression of the endocytic partners megalin, cubilin, and disabled-2 and uptake of vitamin D-binding protein in human mammary cells. J Nutr. 2008;138(7):1323–1328. doi:10.1093/jn/138.7.1323
  • Nykjaer A, Dragun D, Walther D, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell. 1999;96(4):507–515. doi:10.1016/S0092-8674(00)80655-8
  • Marzolo MP, Farfan P. New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res. 2011;44(1):89–105. doi:10.4067/S0716-97602011000100012
  • Wimalawansa SJ. Skeletal benefits, endocrine functions, and toxicity of vitamin D. J Endocrinol Diab. 2016;3(3):1–5. doi:10.15226/2374-6890/3/3/00152
  • Hollis BW, Wagner CL. Clinical review: the role of the parent compound vitamin D with respect to metabolism and function: why clinical dose intervals can affect clinical outcomes. J Clin Endocrinol Metab. 2013;98(12):4619–4628. doi:10.1210/jc.2013-2653
  • Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–58. doi:10.1210/jc.2010-2704
  • Force USPST, Curry SJ, Owens DK, et al. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: US preventive services task force recommendation statement. JAMA. 2018;319(15):1592–1599. doi:10.1001/jama.2018.3185
  • Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–1930. doi:10.1210/jc.2011-0385
  • Wagner CL, Hollis BW, Kotsa K, et al. Vitamin D administration during pregnancy as prevention for pregnancy, neonatal and postnatal complications. Rev Endocr Metab Disord. 2017;18(3):307–322. doi:10.1007/s11154-017-9414-3
  • Quraishi SA, De Pascale G, Needleman JS, et al. Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsis: a randomized, placebo-controlled Trial. Crit Care Med. 2015;43(9):1928–1937. doi:10.1097/CCM.0000000000001148
  • Quraishi SA, Bittner EA, Blum L, et al. Association between preoperative 25-hydroxyvitamin D level and hospital-acquired infections following Roux-en-Y gastric bypass surgery. JAMA Surg. 2014;149(2):112–118. doi:10.1001/jamasurg.2013.3176
  • Wimalawansa SJ. Rapidly increasing serum 25(OH)D boosts the immune system, against infections-sepsis and COVID-19. Nutrients. 2022;14(14):2997.
  • Tsujino I, Ushikoshi-Nakayama R, Yamazaki T, et al. Pulmonary activation of vitamin D3 and preventive effect against interstitial pneumonia. J Clin Biochem Nutr. 2019;65(3):245–251. doi:10.3164/jcbn.19-48
  • Wimalawansa SJ. Fighting against COVID-19: boosting the immunity with micronutrients, stress reduction, physical activity, and vitamin D. Nutr Food Sci. 2020c;3:1–4.
  • Wimalawansa SJ. Achieving population vitamin D sufficiency will markedly reduce healthcare costs. EJBPS. 2020;7:136–141.
  • Institute of Medicine. Scientific evaluation of dietary reference intakes for calcium and vitamin D; 2010. Available from: http://www.iom.edu/Reports/2010/Dietary-Reference-Intakes-for-Calcium-and-Vitamin-D.aspx. Accessed November 29, 2022.
  • Annonymus. Vitamin D: fact sheet for consumers. 2022; Available from: https://ods.od.nih.gov/factsheets/vitamind-healthprofessional/. Accessed May 30, 2022.
  • Grant WB, Hadi MA, Hasan SS, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(6):1626. doi:10.3390/nu12061626
  • Cho DH, Lee GY, An JH, et al. The effects of 1,25(OH)2 D3 treatment on immune responses and intracellular metabolic pathways of bone marrow-derived dendritic cells from lean and obese mice. IUBMB Life. 2021;74:378–390.
  • Premkumar M, Sable T, Dhanwal D, et al. Vitamin D homeostasis, bone mineral metabolism, and seasonal affective disorder during 1 year of Antarctic residence. Arch Osteoporos. 2013;8:129. doi:10.1007/s11657-013-0129-0
  • Kow CS, Hadi MA, Hasan SS. Vitamin D supplementation in influenza and COVID-19 infections comment on: “evidence that vitamin d supplementation could reduce risk of influenza and COVID-19 infections and deaths”. Nutrients. 2020;12(6):988.
  • Wimalawansa SJ. Vitamin D; What clinicians would like to know. Sri Lanka J Diabet Endocrinol Metabo. 2012;1(2):73–88. doi:10.4038/sjdem.v2i2.4776
  • Wimalawansa SJ. Non-musculoskeletal benefits of vitamin D. J Steroid Biochem Mol Biol. 2018;175:60–81. doi:10.1016/j.jsbmb.2016.09.016
  • Chauss D, Freiwald T, McGregor R, et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nat Immunol. 2022;23(1):62–74. doi:10.1038/s41590-021-01080-3
  • Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep. 2011;11(1):29–36. doi:10.1007/s11882-010-0161-8
  • Zhang J, McCullough PA, Tecson KM. Vitamin D deficiency in association with endothelial dysfunction: implications for patients with COVID-19. Rev Cardiovasc Med. 2020;21(3):339–344. doi:10.31083/j.rcm.2020.03.131
  • Quraishi SA, Bittner EA, Blum L, et al. Prospective study of vitamin D status at initiation of care in critically ill surgical patients and risk of 90-day mortality. Crit Care Med. 2014;42(6):1365–1371. doi:10.1097/CCM.0000000000000210
  • Jiang Y, Chen L, Taylor RN, et al. Physiological and pathological implications of retinoid action in the endometrium. J Endocrinol. 2018;236(3):R169–R188. doi:10.1530/JOE-17-0544
  • Keane KN, Cruzat VF, Calton EK, et al. Molecular actions of vitamin D in reproductive cell biology. Reproduction. 2017;153(1):R29–R42. doi:10.1530/REP-16-0386
  • Pludowski P, Holick MF, Grant WB, et al. Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol. 2018;175:125–135. doi:10.1016/j.jsbmb.2017.01.021
  • McCartney DM, Byrne DG. Optimisation of vitamin D status for enhanced immuno-protection against COVID-19. Ir Med J. 2020;113(4):58.
  • Zhou YF, Luo BA, Qin LL. The association between vitamin D deficiency and community-acquired pneumonia: a meta-analysis of observational studies. Medicine. 2019;98(38):e17252. doi:10.1097/MD.0000000000017252
  • Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health. 2020;13(10):1373–1380. doi:10.1016/j.jiph.2020.06.021
  • Borsche L, Glauner B, von Mendel J. COVID-19 mortality risk correlates inversely with vitamin D3 Status, and a mortality rate close to zero could theoretically be achieved at 50 ng/mL 25(OH)D3: results of a systematic review and meta-analysis. Nutrients. 2021;13(10):3596. doi:10.3390/nu13103596
  • Luxwolda MF, et al., Vitamin D status indicators in indigenous populations in East Africa. Eur J Nutr, 2013. 52(3): p. 1115–25.
  • Luxwolda MF, Kema KR, IP JDBD, Muskiet FA, Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr., 2012: p. 1–5
  • Gibbons JB, et al., Association between vitamin D supplementation and COVID-19 infection and mortality. Sci Rep, 2022. 12(1): p. 193
  • Jayawardena R, Jeyakumar DT, Francis TV, et al. Impact of the vitamin D deficiency on COVID-19 infection and mortality in Asian countries. Diabetes Metab Syndr. 2021;15(3):757–764. doi:10.1016/j.dsx.2021.03.006
  • Castillo EM, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751. doi:10.1016/j.jsbmb.2020.105751
  • Wimalawansa SJ, Polonowita A Boosting immunity with vitamin D for preventing complications and deaths from COVID-19. in COVID 19: impact, mitigation, opportunities and building resilience “From adversity to serendipity”, perspectives of global relevance based on research, experience and successes in combating COVID-19 in Sri Lanka. Colombo, Sri Lanka: National Science Foundation, Sri Lanka; 2021.
  • Quraishi SA, Litonjua AA, Moromizato T, et al. Association between prehospital vitamin D status and hospital-acquired bloodstream infections. Am J Clin Nutr. 2013;98(4):952–959. doi:10.3945/ajcn.113.058909
  • Carter SJ, Baranauskas MN, Fly AD. Considerations for obesity, vitamin D, and physical activity amidst the COVID-19 pandemic. Obesity. 2020;28:1176–1177. doi:10.1002/oby.22838
  • DrorI A, MorozovI N, Daoud A, et al. Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PLoS One. 2022;17:1–18.
  • Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19-A systematic review of current evidence. Ecancermedical Sci. 2020;14:1022. doi:10.3332/ecancer.2020.1022
  • Bishop E, Ismailova A, Dimeloe S, et al. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. JBMR Plus. 2020;5:e10405.
  • Cao Z, Wu Y, Faucon E, et al. SARS-CoV-2 & Covid-19: key-roles of the ‘renin-angiotensin’ system/ vitamin D impacting drug and vaccine developments. Infect Disord Drug Targets. 2020;20(3):348–349. doi:10.2174/1871526520999200505174704
  • Czaja AJ. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World J Gastroenterol. 2016;22(42):9257–9278. doi:10.3748/wjg.v22.i42.9257
  • Jin D, Wu S, Zhang Y-G, et al. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther. 2015;37(5):996–1009 e7. doi:10.1016/j.clinthera.2015.04.004
  • Laplana M, Royo JL, Fibla J. Vitamin D Receptor polymorphisms and risk of enveloped virus infection: a meta-analysis. Gene. 2018;678:384–394. doi:10.1016/j.gene.2018.08.017
  • Platitsyna NG, Bolotnova TV. Vitamin D deficiency as a risk factor for chronic non-infectious diseases. Adv Gerontol. 2017;30(6):873–879.
  • Pletz MW, Terkamp C, Schumacher U, et al. Vitamin D deficiency in community-acquired pneumonia: low levels of 1,25(OH)2 D are associated with disease severity. Respir Res. 2014;15:53. doi:10.1186/1465-9921-15-53
  • Ginde AA, Mansbach JM, Camargo CA. Vitamin D, respiratory infections, and asthma. Curr Allergy Asthma Rep. 2009;9(1):81–87. doi:10.1007/s11882-009-0012-7
  • Ianevski A, Zusinaite E, Shtaida N, et al. Low temperature and low UV indexes correlated with peaks of influenza virus activity in Northern Europe during 2010–2018. Viruses. 2019;11(3):207. doi:10.3390/v11030207
  • Imai CM, Halldorsson TI, Eiriksdottir G, et al. Depression and serum 25-hydroxyvitamin D in older adults living at northern latitudes - AGES-Reykjavik Study. J Nutr Sci. 2015;4:e37. doi:10.1017/jns.2015.27
  • Devaraj S, Jialal G, Cook T, et al. Low vitamin D levels in Northern American adults with the metabolic syndrome. Horm Metab Res. 2011;43(1):72–74. doi:10.1055/s-0030-1268485
  • Eroglu C, Demir F, Erge D, et al. The relation between serum vitamin D levels, viral infections and severity of attacks in children with recurrent wheezing. Allergol Immunopathol. 2019;47(6):591–597. doi:10.1016/j.aller.2019.05.002
  • Arihiro S, Nakashima A, Matsuoka M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza and upper respiratory infection in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2019;25(6):1088–1095. doi:10.1093/ibd/izy346
  • Jolliffe DA, Greiller CL, Mein CA, et al. Vitamin D receptor genotype influences risk of upper respiratory infection. Br J Nutr. 2018;120(8):891–900. doi:10.1017/S000711451800209X
  • Reichrath J, Saternus R, Vogt T. Challenge and perspective: the relevance of ultraviolet (UV) radiation and the vitamin D endocrine system (VDES) for psoriasis and other inflammatory skin diseases. Photochem Photobiol Sci. 2017;16(3):433–444. doi:10.1039/c6pp00280c
  • Saraiva GL, Cendoroglo MS, Ramos LR, et al. Influence of ultraviolet radiation on the production of 25 hydroxyvitamin D in the elderly population in the city of Sao Paulo (23 degrees 34’S), Brazil. Osteoporos Int. 2005;16(12):1649–1654. doi:10.1007/s00198-005-1895-3
  • Zdrenghea MT, Makrinioti H, Bagacean C, et al. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1):e1909. doi:10.1002/rmv.1909
  • Morris SK, Pell LG, Rahman MZ, et al. Maternal vitamin D supplementation during pregnancy and lactation to prevent acute respiratory infections in infancy in Dhaka, Bangladesh (MDARI trial): protocol for a prospective cohort study nested within a randomized controlled trial. BMC Pregnancy Childbirth. 2016;16(1):309. doi:10.1186/s12884-016-1103-9
  • Sabatier I, Chabrier S, Brun A, et al. Stroke by carotid artery complete occlusion in Kawasaki disease: case report and review of literature. Pediatr Neurol. 2013;49(6):469–473. doi:10.1016/j.pediatrneurol.2013.08.011
  • Di Filippo L, Allora A, Doga M, et al. Vitamin D levels are associated with blood glucose and BMI in COVID-19 patients, predicting disease severity. J Clin Endocrinol Metab. 2022;107(1):e348–e360. doi:10.1210/clinem/dgab599
  • Di Filippo L, De Lorenzo R, Giustina A, et al. Vitamin D in osteosarcopenic obesity. Nutrients. 2022;14(9):1816. doi:10.3390/nu14091816
  • Migliaccio S, Di Nisio A, Mele C, et al. Obesity and hypovitaminosis D: causality or casualty? Int J Obes Suppl. 2019;9(1):20–31. doi:10.1038/s41367-019-0010-8
  • Maddaloni E. Vitamin D and diabetes mellitus. Front Horm Res. 2018;50:161–176.
  • Cashman KD, Ritz C, Carlin A, et al. Vitamin D biomarkers for Dietary Reference Intake development in children: a systematic review and meta-analysis. Am J Clin Nutr. 2022;115(2):544–558. doi:10.1093/ajcn/nqab357
  • Cashman KD, FitzGerald AP, Viljakainen HT, et al. Estimation of the dietary requirement for vitamin D in healthy adolescent white girls. Am J Clin Nutr. 2011;93(3):549–555. doi:10.3945/ajcn.110.006577
  • Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693–3702. doi:10.1111/febs.15495
  • Grant WB, Al Anouti F, Moukayed M. Targeted 25-hydroxyvitamin D concentration measurements and vitamin D3 supplementation can have important patient and public health benefits. Eur J Clin Nutr. 2020;74(3):366–376. doi:10.1038/s41430-020-0564-0
  • Kazemi A, Mohammadi V, Aghababaee SA, Golzarand M, Clark CCT, Babajafari S. Association of vitamin D status with SARS-CoV-2 infection or COVID-19 severity: a systematic review and meta-analysis. Adv Nutr. 2021;00(p):1–23.
  • Wimalawansa SJ. Controlling COVID-19 pandemic with cholecalciferol. Heathcare Res. 2020;5(1):155–165.
  • Wimalawansa SJ. Oral calcifediol repletes blood vitamin D concentration within 4 hours; 2021. Available from: https://www.linkedin.com/posts/sunilwimalawansa_oral-calcifediol-repletes-blood-vitamin-activity-6803351558714204160-dtnd. Accessed May 25, 2022.
  • Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–1773. doi:10.1126/science.1123933
  • Vieth R. Why “Vitamin D” is not a hormone, and not a synonym for 1,25-dihydroxy-vitamin D, its analogs or deltanoids. J Steroid Biochem Mol Biol. 2004;89(1–5):571–573. doi:10.1016/j.jsbmb.2004.03.037
  • Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(7):1157–1160. doi:10.1007/s00210-020-01911-4
  • Kaufman HW, Niles JK, Kroll MH, et al. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One. 2020;15(9):e0239252. doi:10.1371/journal.pone.0239252
  • Alexander J, Tinkov A, Strand TA, et al. Early nutritional interventions with zinc, selenium and vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients. 2020;12(8):2358. doi:10.3390/nu12082358
  • Bakaloudi DR, Chourdakis M. A critical update on the role of mild and serious vitamin D deficiency prevalence and the COVID-19 epidemic in Europe. Nutrition. 2022;93:111441. doi:10.1016/j.nut.2021.111441
  • Akbari AR, Khan M, Adeboye W, et al. Ethnicity as a risk factor for vitamin D deficiency and undesirable COVID-19 outcomes. Rev Med Virol. 2021;32:e2291. doi:10.1002/rmv.2291
  • Vanegas-Cedillo PE, Bello-Chavolla OY, Ramírez-Pedraza N, et al. Serum vitamin D levels are associated with Increased COVID-19 severity and mortality independent of whole-body and visceral adiposity. Front Nutr. 2022;9:813485. doi:10.3389/fnut.2022.813485
  • DiNicolantonio JJ, O’Keefe JH. Magnesium and vitamin D deficiency as a potential cause of Immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients. Mo Med. 2021;118(1):68–73. doi:10.1101/2020.04.24.20075838
  • Kumar P, Kumar M, Bedi O, et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology. 2021;29(4):1001–1016. doi:10.1007/s10787-021-00826-7
  • Kumar R, Rathi H, Haq A, Wimalawansa SJ, Sharma A. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Virus Res. 2021;292:198235. doi:10.1016/j.virusres.2020.198235
  • D’Avolio A, Avataneo V, Manca A, et al. 25-hydroxyvitamin D concentrations are Lower in patients with positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. doi:10.3390/nu12051359
  • Sims JT, et al. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J Allergy Clin Immunol. 2020;147:107–111.
  • Hojyo S, Uchida M, Tanaka K, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen. 2020;40:37. doi:10.1186/s41232-020-00146-3
  • Iannaccone G, Gul F, Ram P, et al. Weathering the cytokine storm in COVID-19: therapeutic implications. Cardiorenal Med. 2020;10:1–11. doi:10.1159/000503919
  • Amaya-Mejia AS, O’Farrill-Romanillos PM, Galindo-Pacheco LV, et al. Vitamin D deficiency in patients with common variable immunodeficiency, with autoimmune diseases and bronchiectasis. Rev Alerg Mex. 2013;60(3):110–116.
  • Broder AR, Tobin JN, Putterman C. Disease-specific definitions of vitamin D deficiency need to be established in autoimmune and non-autoimmune chronic diseases: a retrospective comparison of three chronic diseases. Arthritis Res Ther. 2010;12(5):R191. doi:10.1186/ar3161
  • Kurylowicz A, Bednarczuk T, Nauman J. The influence of vitamin D deficiency on cancers and autoimmune diseases development. Endokrynol Pol. 2007;58(2):140–152.
  • Wimalawansa SJ. COVID-19: evolution and prevention. Trends Telemed E Health. 2020;2(3):1–5.
  • Antal AS, Dombrowski Y, Koglin S, et al. Impact of vitamin D3 on cutaneous immunity and antimicrobial peptide expression. DermatoEndocrinol. 2011;3(1):18–22. doi:10.4161/derm.3.1.14616
  • Gibson CC, Davis CT, Zhu W, et al. Dietary vitamin D and its metabolites non-genomically stabilize the endothelium. PLoS One. 2015;10(10):e0140370. doi:10.1371/journal.pone.0140370
  • Aloia JF, Li-Ng M. Re: epidemic influenza and vitamin D. Epidemiol Infect. 2007;135(7):1095–1096. doi:10.1017/S0950268807008308
  • Fleming DM, Elliot AJ. Epidemic influenza and vitamin D. Epidemiol Infect. 2007;135(7):1091–1092. doi:10.1017/S0950268807008291
  • Moromizato T, Litonjua AA, Braun AB, et al. Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit Care Med. 2014;42(1):97–107. doi:10.1097/CCM.0b013e31829eb7af
  • Hanff TC, Harhay MO, Brown TS, et al. Is There an association between COVID-19 mortality and the renin-angiotensin system-a call for epidemiologic investigations. Clin Infect Dis. 2020;71:870–874. doi:10.1093/cid/ciaa329
  • Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020;126:1671–1681.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi:10.1016/j.cell.2020.02.052
  • Danser AHJ, Epstein M, Batlle D. Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers. Hypertension. 2020;75:1382–1385. doi:10.1161/HYPERTENSIONAHA.120.15082
  • Diaz JH. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med. 2020;27(3). doi:10.1093/jtm/taaa041
  • Lim H, Kim SE, Lee YH, et al. Immunogenicity of candidate SARS-CoV-2 DNA vaccines based on the spike protein. Virology. 2022;573:118–123. doi:10.1016/j.virol.2022.06.006
  • Almehdi AM, Khoder G, Alchakee AS, et al. SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection. 2021;49(5):855–876. doi:10.1007/s15010-021-01677-8
  • Kong J, Zhu X, Shi Y, et al. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol Endocrinol. 2013;27(12):2116–2125. doi:10.1210/me.2013-1146
  • Liu Z, Xiao X, Wei X, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol. 2020;92:595–601.
  • Tomaschitz A, Pilz S, Ritz E, et al. Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin-angiotensin system: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chim Acta. 2010;411(17–18):1354–1360. doi:10.1016/j.cca.2010.05.037
  • Xu J, Sriramula S, Xia H, et al. Clinical relevance and role of neuronal AT 1 receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circ Res. 2017;121(1):43–55. doi:10.1161/CIRCRESAHA.116.310509
  • Xu J, Yang J, Chen J, et al. Vitamin D alleviates lipopolysaccharide induced acute lung injury via regulation of the renin angiotensin system. Mol Med Rep. 2017;16(5):7432–7438. doi:10.3892/mmr.2017.7546
  • Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D deficiency and outcome of COVID-19 patients. Nutrients. 2020;12(9):2757. doi:10.3390/nu12092757
  • Wimalawansa SJ. Fighting against COVID-19: boosting the immunity with micronutrients, stress reduction, physical activity, and vitamin D. Nutr Food Sci. 2020;3(126):1–4.
  • Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann Transl Med. 2016;4(21):421. doi:10.21037/atm.2016.11.03
  • Yuan W, Pan W, Kong J, et al. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem. 2007;282(41):29821–29830. doi:10.1074/jbc.M705495200
  • Wimalawansa SJ. ACE inhibitors and angiotensin receptor blockers reduce the complications associated with COVID-19 infection. World J Pharma Res. 2021;10(3):2579–2600.
  • Entrenas castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751.
  • McGregor E, Kazemian M, Afzali B, et al. An autocrine Vitamin D-driven Th1 shutdown program can be exploited for COVID-19; 2020. Available from: 10.1101/2020.07.18.210161v1. Accessed November 29, 2022.
  • McGregor TB, Sener A, Yetzer K, et al. The impact of COVID-19 on the Canadian Kidney Paired Donation program: an opportunity for universal implementation of kidney shipping. Can J Surg. 2020;63(5):E451–E453. doi:10.1503/cjs.012620
  • Wallis G, Siracusa F, Blank M, et al. Experience of a novel community testing programme for COVID-19 in London: lessons learnt. Clin Med. 2020;20(5):e165–e169. doi:10.7861/clinmed.2020-0436
  • Walter LA, McGregor AJ. Sex- and Gender-specific Observations and Implications for COVID-19. West J Emerg Med. 2020;21(3):507–509. doi:10.5811/westjem.2020.4.47536
  • Stagi S. Severe vitamin D deficiency in patients with Kawasaki disease: a potential role in the risk to develop heart vascular abnormalities? Clin Rheumatol. 2016;35(7):1865–1872. doi:10.1007/s10067-015-2970-6
  • Kirkham FJ, Zafeiriou D, Howe D, et al. Fetal stroke and cerebrovascular disease: advances in understanding from lenticulostriate and venous imaging, alloimmune thrombocytopaenia and monochorionic twins. Eur J Paediatr Neurol. 2018;22(6):989–1005. doi:10.1016/j.ejpn.2018.08.008
  • Kaparianos A, Argyropoulou E. Local renin-angiotensin II systems, angiotensin-converting enzyme and its homologue ACE2: their potential role in the pathogenesis of chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory distress syndrome. Curr Med Chem. 2011;18(23):3506–3515. doi:10.2174/092986711796642562
  • Hughes DA, Norton R, Aloia JF, Li-ng M. Vitamin D and respiratory health. Clin Exp Immunol. 2009;158(1):20–25. doi:10.1111/j.1365-2249.2009.04001.x
  • Singh S, Kaur R, Singh RK. Revisiting the role of vitamin D levels in the prevention of COVID-19 infection and mortality in European countries post infections peak. Aging Clin Exp Res. 2020;32(8):1609–1612. doi:10.1007/s40520-020-01619-8
  • Ma W, Nguyen LH, Yue Y, et al. Associations between predicted vitamin D status, vitamin D intake, and risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) severity. Am J Clin Nutr. 2022;115(4):1123–1133. doi:10.1093/ajcn/nqab389
  • D’Ecclesiis O, Gavioli C, Martinoli C, et al. Vitamin D and SARS-CoV2 infection, severity and mortality: a systematic review and meta-analysis. PLoS One. 2022;17(7):e0268396. doi:10.1371/journal.pone.0268396
  • Chiodini I, Gatti D, Soranna D, et al. Vitamin D status and SARS-CoV-2 infection and COVID-19 clinical outcomes. Front Public Health. 2021;9:736665. doi:10.3389/fpubh.2021.736665
  • Akbar MR, Wibowo A, Pranata R, et al. Low serum 25-hydroxyvitamin D (vitamin D) level Is associated with susceptibility to COVID-19, severity, and mortality: a systematic review and meta-analysis. Front Nutr. 2021;8:660420. doi:10.3389/fnut.2021.660420
  • Santaolalla A, Beckmann K, Kibaru J, et al. Association between vitamin D and novel SARS-CoV-2 respiratory dysfunction - a scoping review of current evidence and its implication for COVID-19 pandemic. Front Physiol. 2020;11:564387. doi:10.3389/fphys.2020.564387
  • Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617–624. doi:10.1136/thoraxjnl-2014-206680
  • McCartney DM. Vitamin D and SARS-CoV-2 infection-evolution of evidence supporting clinical practice and policy development: a position statement from the Covit-D Consortium. Ir J Med Sci. 2021;190(3):1253–1265.
  • Arabi YM, Fowler R, Hayden FG. Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med. 2020;46(2):315–328. doi:10.1007/s00134-020-05943-5
  • Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi:10.1136/bmj.i6583
  • Biesalski HK, Aggett PJ, Anton R, et al. 26th Hohenheim consensus conference, September 11, 2010 scientific substantiation of health claims: evidence-based nutrition. Nutrition. 2011;27(10 Suppl):S1–S20. doi:10.1016/j.nut.2011.04.002
  • Tsai F, Coyle WJ. The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep. 2009;11(4):307–313. doi:10.1007/s11894-009-0045-z
  • Veugelers PJ, Pham TM, Ekwaru JP. Optimal vitamin D supplementation doses that minimize the risk for both low and high serum 25-hydroxyvitamin D concentrations in the general population. Nutrients. 2015;7(12):10189–10208. doi:10.3390/nu7125527
  • Huang Z, You T. Personalise vitamin D3 using physiologically based pharmacokinetic modelling. CPT Pharmacometrics Syst Pharmacol. 2021;10(7):723–734. doi:10.1002/psp4.12640
  • McKenna MJ, Lyons OC, Flynn MA, et al. COVID-19 pandemic and vitamin D: rising trends in status and in daily amounts of vitamin D provided by supplements. BMJ Open. 2022;12(8):e059477. doi:10.1136/bmjopen-2021-059477
  • Hopefl R, Ben-Eltriki M, Deb S. Association between vitamin D levels and inflammatory markers in COVID-19 patients: a meta-analysis of observational studies. J Pharm Pharm Sci. 2022;25:124–136. doi:10.18433/jpps32518
  • Rhodes JM, Subramanian S, Laird E, et al. Perspective: vitamin D deficiency and COVID-19 severity - plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2, and thrombosis (R1). J Intern Med. 2020;289:97–115. doi:10.1111/joim.13149
  • Procter BC, Ross C, Pickard V, et al. Clinical outcomes after early ambulatory multidrug therapy for high-risk SARS-CoV-2 (COVID-19) infection. Rev Cardiovasc Med. 2020;21(4):611–614.
  • Gunn J, Hill MM, Cotten BM, et al. An analysis of biomarkers in patients with chronic pain. Pain Physician. 2020;23(1):E41–E49. doi:10.36076/ppj.2020/23/E41
  • Chen S, Liu G, Chen J, et al. Ponatinib protects mice from lethal influenza infection by suppressing cytokine storm. Front Immunol. 2019;10:1393. doi:10.3389/fimmu.2019.01393