405
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Real-World Impact of Robotic-Assisted Bronchoscopy on the Staging and Diagnosis of Lung Cancer: The Shape of Current and Potential Opportunities

&
Pages 75-94 | Received 02 May 2023, Accepted 10 Aug 2023, Published online: 05 Sep 2023

References

  • Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398(10299):535–554. doi:10.1016/s0140-6736(21)00312-3
  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. Cancer J Clin. 2022;72(1):7–33. doi:10.3322/caac.21708
  • Group USCSW. U.S. Cancer Statistics Data Visualizations Tool, based on 2021 submission data (1999–2019). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; 2021.
  • Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 2020;383(7):640–649. doi:10.1056/nejmoa1916623
  • Oken MM, Hocking WG, Kvale PA, et al. Screening by chest radiograph and lung cancer mortality. JAMA. 2011;306(17):1865. doi:10.1001/jama.2011.1591
  • Team TNLSTR. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409. doi:10.1056/nejmoa1102873
  • De Koning HJ, Van Der Aalst CM, De Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382(6):503–513. doi:10.1056/nejmoa1911793
  • Landy R, Young CD, Skarzynski M, et al. Using prediction models to reduce persistent racial and ethnic disparities in the draft 2020 USPSTF lung cancer screening guidelines. JNCI. 2021;113(11):1590–1594. doi:10.1093/jnci/djaa211
  • D’Angelo SP, Janjigian YY, Ahye N, et al. Distinct clinical course of EGFR -mutant resected lung cancers: results of testing of 1118 surgical specimens and effects of adjuvant gefitinib and erlotinib. J Thorac Oncol. 2012;7(12):1815–1822. doi:10.1097/jto.0b013e31826bb7b2
  • Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311(19):1998. doi:10.1001/jama.2014.3741
  • Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors. J Mol Diagn. 2018;20(2):129–159. doi:10.1016/j.jmoldx.2017.11.004
  • Labarca G, Folch E, Jantz M, Mehta HJ, Majid A, Fernandez-Bussy S. Adequacy of samples obtained by endobronchial ultrasound with transbronchial needle aspiration for molecular analysis in patients with non-small cell lung cancer. Systematic review and meta-analysis. Ann Am Thorac Soc. 2018;15(10):1205–1216. doi:10.1513/AnnalsATS.201801-045OC
  • Forde PM, Spicer J, Lu S, et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. 2022;386(21):1973–1985. doi:10.1056/nejmoa2202170
  • Wakelee H, Liberman M, Kato T, et al. Perioperative pembrolizumab for early-stage non–small-cell lung cancer. N Engl J Med. 2023. doi:10.1056/nejmoa2302983
  • Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Chest. 2013;143(5):e93S–e120S. doi:10.1378/chest.12-2351
  • Wiener RS, Schwartz LM, Woloshin S, Welch HG. Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: an analysis of discharge records. Ann Intern Med. 2011;155(3):137. doi:10.7326/0003-4819-155-3-201108020-00003
  • Huo YR, Chan MV, Habib AR, Lui I, Ridley L. Pneumothorax rates in CT-Guided lung biopsies: a comprehensive systematic review and meta-analysis of risk factors. Br J Radiol. 2020;93(1108):20190866. doi:10.1259/bjr.20190866
  • Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer. Chest. 2013;143(5):e142S–e165S. doi:10.1378/chest.12-2353
  • Tanner NT, Yarmus L, Chen A, et al. Standard bronchoscopy with fluoroscopy vs thin bronchoscopy and radial endobronchial ultrasound for biopsy of pulmonary lesions. Chest. 2018;154(5):1035–1043. doi:10.1016/j.chest.2018.08.1026
  • Mehta AC, Hood KL, Schwarz Y, Solomon SB. The evolutional history of electromagnetic navigation bronchoscopy: state of the art. Chest. 2018;154(4):935–947. doi:10.1016/j.chest.2018.04.029
  • Lachkar S, Perrot L, Gervereau D, et al. Radial‐EBUS and virtual bronchoscopy planner for peripheral lung cancer diagnosis: how it became the first‐line endoscopic procedure. Thoracic Cancer. 2022;13(20):2854–2860. doi:10.1111/1759-7714.14629
  • Folch EE, Bowling MR, Pritchett MA, et al. NAVIGATE 24-month results: electromagnetic navigation bronchoscopy for pulmonary lesions at 37 centers in Europe and the United States. J Thorac Oncol. 2022;17(4):519–531. doi:10.1016/j.jtho.2021.12.008
  • Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012;142(2):385–393. doi:10.1378/chest.11-1764
  • Nadig TR, Thomas N, Nietert PJ, et al. Guided bronchoscopy for the evaluation of pulmonary lesions: an updated meta-analysis. Chest 2023;163(6): 1589–1598. doi:10.1016/j.chest.2022.12.044
  • Folch EE, Labarca G, Ospina-Delgado D, et al. Sensitivity and safety of electromagnetic navigation bronchoscopy for lung cancer diagnosis: systematic review and meta-analysis. Chest. 2020;158(4):1753–1769. doi:10.1016/j.chest.2020.05.534
  • Low SW, Lentz RJ, Chen H, et al. Shape-sensing robotic-assisted bronchoscopy vs digital tomosynthesis-corrected electromagnetic navigation bronchoscopy: a comparative cohort study of diagnostic performance. Chest. 2023;163(4):977–984. doi:10.1016/j.chest.2022.10.019
  • U.S. Food and Drug Administration. 510(k) premarket notification - ion endoluminal system. Report K192367; 2022.
  • Duke JD, Reisenauer J. Review: technology and techniques for robotic-assisted bronchoscopy. J Lung Health Dis. 2022;6(1):1–5. doi:10.29245/2689-999x/2022/1.1179
  • Diddams MJ, Lee HJ. Robotic bronchoscopy: review of three systems. Life. 2023;13(2):354. doi:10.3390/life13020354
  • Ho E, Hedstrom G, Murgu S. Robotic bronchoscopy in diagnosing lung cancer—the evidence, tips and tricks: a clinical practice review. Ann Transl Med. 2023;1(1):1. doi:10.21037/atm-22-3078
  • Folch E, Mittal A, Oberg C. Robotic bronchoscopy and future directions of interventional pulmonology. Curr Opin Pulm Med. 2022;28(1):37–44. doi:10.1097/mcp.0000000000000849
  • Bhadra K, Rickman OB, Mahajan AK, Hogarth DK. “Tool-in-lesion” accuracy of galaxy system—A robotic electromagnetic navigation bronchoscopy with integrated tool-in-lesion-tomosynthesis technology: the MATCH Study. J Bronchology Interv Pulmonol. 2023. doi:10.1097/lbr.0000000000000923
  • Cho RJ, Keenan J, Murgu S. The feasibility of using the “vessel sign” for pre-procedural planning in navigation bronchoscopy for peripheral pulmonary lesion sampling: a dual-center retrospective study. Am J Respir Crit Care Med. 2023;207:A3670–A3670. doi:10.1164/ajrccm-conference.2022.205.1_MeetingAbstracts.A3670
  • Ho E, Cho RJ, Keenan JC, Murgu S. The feasibility of using the “artery sign” for pre-procedural planning in navigational bronchoscopy for parenchymal pulmonary lesion sampling. Diagnostics. 2022;12(12):3059. doi:10.3390/diagnostics12123059
  • Reisenauer J, Simoff MJ, Pritchett MA, et al. Ion: technology and techniques for shape-sensing robotic-assisted bronchoscopy. Ann Thorac Surg. 2022;113(1):308–315. doi:10.1016/j.athoracsur.2021.06.086
  • Akulian JA, Molena D, Wahidi MM, et al. A direct comparative study of bronchoscopic navigation planning platforms for peripheral lung navigation: the ATLAS study. J Bronchology Interv Pulmonol. 2022;29(3):171–178. doi:10.1097/lbr.0000000000000806
  • Ekeke CN, Vercauteren M, Istvaniczdravkovic S, Semaan R, Dhupar R. Lung nodule evaluation using robotic-assisted bronchoscopy at a veteran’s affairs hospital. J Clin Med. 2021;10(16):3671. doi:10.3390/jcm10163671
  • McLoughlin KC, Bott MJ. Robotic bronchoscopy for the diagnosis of pulmonary lesions. Thorac Surg Clin. 2023;33(1):109–116. doi:10.1016/j.thorsurg.2022.08.008
  • Salahuddin M, Sarkiss M, Sagar AS, et al. Ventilatory strategy to prevent atelectasis during bronchoscopy under general anesthesia: a multicenter randomized controlled trial (ventilatory strategy to prevent atelectasis -VESPA- trial). Chest. 2022;162(6):1393–1401. doi:10.1016/j.chest.2022.06.045
  • Setser R, Chintalapani G, Bhadra K, Casal RF. Cone beam CT imaging for bronchoscopy: a technical review. J Thorac Dis. 2020;12(12):7416–7428. doi:10.21037/jtd-20-2382
  • Khan F, Seaman J, Hunter TD, et al. Diagnostic outcomes of robotic-assisted bronchoscopy for pulmonary lesions in a real-world multicenter community setting. BMC Pulm Med. 2023;23(1). doi:10.1186/s12890-023-02465-w
  • Vachani A, Maldonado F, Laxmanan B, Kalsekar I, Murgu S. The impact of alternative approaches to diagnostic yield calculation in studies of bronchoscopy. Chest. 2022;161(5):1426–1428. doi:10.1016/j.chest.2021.08.074
  • Yarmus L, Wahidi M, Lee H, et al. The PRECISION-1 study: a prospective single-blinded randomized comparative study of three guided bronchoscopic approaches for investigating pulmonary nodules. Chest. 2019;156(4):A2256–A2257. doi:10.1016/j.chest.2019.08.311
  • Chaddha U, Kovacs SP, Manley C, et al. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: results from the initial multicenter experience. BMC Pulm Med. 2019;19(1):243. doi:10.1186/s12890-019-1010-8
  • Fielding DIK, Bashirzadeh F, Son JH, et al. First human use of a new robotic-assisted fiber optic sensing navigation system for small peripheral pulmonary nodules. Respiration. 2019;98(2):142–150. doi:10.1159/000498951
  • Benn BS, Romero AO, Lum M, Krishna G. Robotic-assisted navigation bronchoscopy as a paradigm shift in peripheral lung access. Lung. 2021;199(2):177–186. doi:10.1007/s00408-021-00421-1
  • Ost D, Pritchett M, Reisenauer J, et al. Prospective multicenter analysis of shape-sensing robotic-assisted bronchoscopy for the biopsy of pulmonary nodules: results from the PRECIsE study. Chest. 2021;160(4):A2531–A2533. doi:10.1016/j.chest.2021.08.034
  • Reisenauer J, Duke JD, Kern R, Fernandez-Bussy S, Edell E. Combining shape-sensing robotic bronchoscopy with mobile three-dimensional imaging to verify tool-in-lesion and overcome divergence: a pilot study. Mayo Clin Proc. 2022;6(3):177–185. doi:10.1016/j.mayocpiqo.2022.02.004
  • Bajwa A, Bawek S, Bajwa S, Rathore A. 76 Consecutive Cases of Robotic-Assisted Navigational Bronchoscopy at a Single Center. Am J Respir Crit Care Med. 2021; 203: A4820. doi:10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A4820
  • Kalchiem-Dekel O, Connolly JG, Lin IH, et al. Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions. Chest. 2022;161(2):572–582. doi:10.1016/j.chest.2021.07.2169
  • Oberg CL, Lau RP, Folch EE, et al. Novel robotic-assisted cryobiopsy for peripheral pulmonary lesions. Lung. 2022;200(6):737–745. doi:10.1007/s00408-022-00578-3
  • Styrvoky K, Schwalk A, Pham D, et al. Shape-sensing robotic-assisted bronchoscopy with concurrent use of radial endobronchial ultrasound and cone beam computed tomography in the evaluation of pulmonary lesions. Lung. 2022;200(6):755–761. doi:10.1007/s00408-022-00590-7
  • Rojas-Solano JR, Ugalde-Gamboa L, Machuzak M. Robotic bronchoscopy for diagnosis of suspected lung cancer: a feasibility study. J Bronchology Interv Pulmonol. 2018;25(3):168–175. doi:10.1097/lbr.0000000000000499
  • Chen AC, Pastis NJ, Mahajan AK, et al. Robotic bronchoscopy for peripheral pulmonary lesions. Chest. 2021;159(2):845–852. doi:10.1016/j.chest.2020.08.2047
  • Agrawal A, Ho E, Chaddha U, et al. Factors associated with diagnostic accuracy of robotic bronchoscopy with 12-month follow-up. Ann Thorac Surg. 2022 ;115(6): 1361–1368. doi:10.1016/j.athoracsur.2021.12.041
  • Cumbo-Nacheli G, Velagapudi RK, Enter M, Egan JPI, Conci D. Robotic-assisted bronchoscopy and cone-beam CT: a retrospective series. J Bronchology Interv Pulmonol. 2022;29(4):303–306. doi:10.1097/lbr.0000000000000860
  • Connolly JG, Kalchiem-Dekel O, Tan KS, et al. Feasibility of shape-sensing robotic-assisted bronchoscopy for biomarker identification in patients with thoracic malignancies. J Thorac Cardiovasc Surg. 2022. doi:10.1016/j.jtcvs.2022.10.059
  • Yu Lee‐Mateus A, Reisenauer J, Garcia‐Saucedo JC, et al. Robotic‐assisted bronchoscopy versus CT‐guided transthoracic biopsy for diagnosis of pulmonary nodules. Respirology. 2023;28(1):66–73. doi:10.1111/resp.14368
  • Kops SEP, Heus P, Korevaar DA, et al. Diagnostic yield and safety of navigation bronchoscopy: a systematic review and meta-analysis. Lung Cancer. 2023;180:107196. doi:10.1016/j.lungcan.2023.107196
  • Gildea TR, Folch EE, Khandhar SJ, et al. The impact of biopsy tool choice and rapid on-site evaluation on diagnostic accuracy for malignant lesions in the prospective: multicenter NAVIGATE study. J Bronchology Interv Pulmonol. 2021;28(3):174–183. doi:10.1097/lbr.0000000000000740
  • Vu LH, Yu Lee-Mateus A, Edell ES, et al. Accuracy of preliminary pathology for robotic bronchoscopic biopsy. Ann Thorac Surg. 2022. doi:10.1016/j.athoracsur.2022.11.022
  • Pritchett MA, Bhadra K, Calcutt M, Folch E. Virtual or reality: divergence between preprocedural computed tomography scans and lung anatomy during guided bronchoscopy. J Thorac Dis. 2020;12(4):1595–1611. doi:10.21037/jtd.2020.01.35
  • Sagar AS, Sabath BF, Eapen GA, et al. Incidence and location of atelectasis developed during bronchoscopy under general anesthesia: the I-LOCATE trial. Chest. 2020;158(6):2658–2666. doi:10.1016/j.chest.2020.05.565
  • Pritchett MA, Lau K, Skibo S, Phillips KA, Bhadra K. Anesthesia considerations to reduce motion and atelectasis during advanced guided bronchoscopy. BMC Pulm Med. 2021;21(1):1.
  • Ravikumar N, Ho E, Wagh A, Murgu S. Advanced imaging for robotic bronchoscopy: a review. Diagnostics. 2023;13(5):990. doi:10.3390/diagnostics13050990
  • Aboudara M, Roller L, Rickman O, et al. Improved diagnostic yield for lung nodules with digital tomosynthesis‐corrected navigational bronchoscopy: initial experience with a novel adjunct. Respirology. 2020;25(2):206–213. doi:10.1111/resp.13609
  • Katsis J, Roller L, Aboudara M, et al. Diagnostic yield of digital tomosynthesis-assisted navigational bronchoscopy for indeterminate lung nodules. J Bronchology Interv Pulmonol. 2021;28(4):255–261. doi:10.1097/lbr.0000000000000766
  • Duke JD, Sanborn D, Reisenauer J. Enhancing nodule biopsy through technology integration. Innovations. 2023;15569845231153639. doi:10.1177/15569845231153639
  • Pritchett MA. Prospective analysis of a novel endobronchial augmented fluoroscopic navigation system for diagnosis of peripheral pulmonary lesions. J Bronchology Interv Pulmonol. 2021;28(2):107–115. doi:10.1097/lbr.0000000000000700
  • Hedstrom G, Wagh A. Combining real-time 3-D imaging and augmented fluoroscopy with robotic bronchoscopy for the diagnosis of peripheral lung nodules. Chest. 2022;162(4 Suppl):A2082. doi:10.1016/j.chest.2022.08.1720
  • Kalchiem‐Dekel O, Fuentes P, Bott MJ, et al. Multiplanar 3D fluoroscopy redefines tool–lesion relationship during robotic‐assisted bronchoscopy. Respirology. 2021;26(1):120–123. doi:10.1111/resp.13966
  • Folch EE, Mahajan AK, Oberg CL, et al. Standardized definitions of bleeding after transbronchial lung biopsy: a delphi consensus statement from the Nashville Working Group. Chest. 2020;158(1):393–400. doi:10.1016/j.chest.2020.01.036
  • Fernandez-Bussy S, Abia-Trujillo D, Majid A, et al. Management of significant airway bleeding during robotic assisted bronchoscopy: a tailored approach. Respiration. 2021;100(6):547–550. doi:10.1159/000514830
  • Fernandez‐Bussy S, Abia‐Trujillo D, Patel NM, et al. Precautionary strategy for high‐risk airway bleeding cases during robotic‐assisted bronchoscopy. Respirol Case Rep. 2021;9(7):1.
  • Al-ghoula F, Albitar H, Nelson D. Exploring the Complications and Challenges of Robotic Bronchoscopy: Insights from MAUDE Database. Mayo Clinic; 2023.
  • Cui F, Liu J, Du M, et al. Expert consensus on indocyanine green fluorescence imaging for thoracoscopic lung resection (the version 2022). Transl Lung Cancer Res. 2022;11(11):2318–2331. doi:10.21037/tlcr-22-810
  • Altorki N, Wang X, Kozono D, et al. Lobar or sublobar resection for peripheral stage IA non–small-cell lung cancer. N Engl J Med. 2023;388(6):489–498. doi:10.1056/nejmoa2212083
  • Chan JWY, Chang ATC, Yu PSY, Lau RWH, Ng CSH. Robotic assisted-bronchoscopy with cone-beam CT ICG dye marking for lung nodule localization: experience beyond USA. Front Surg. 2022;9. doi:10.3389/fsurg.2022.943531
  • Maxwell CM, Ng C, Fernando HC. Stereotactic body radiation therapy versus ablation versus surgery for early-stage lung cancer in high-risk patients. Thorac Surg Clin. 2023;33(2):179–187. doi:10.1016/j.thorsurg.2023.01.003
  • Siu ICH, Chan JWY, Manuel Ii TB, Ngai JCL, Lau RWH, Ng CSH. Bronchoscopic ablation of lung tumours: patient selection and technique. J Vis Surg. 2022;8:36. doi:10.21037/jovs-21-45
  • Chan JWY, Siu ICH, Chang ATC, et al. Transbronchial techniques for lung cancer treatment: where are we now? Cancers. 2023;15(4):1068. doi:10.3390/cancers15041068
  • Iding J, VanderLaan P, Jimenez M, et al. 702 Tertiary lymphoid structures (TLS) observed in non-small cell lung cancer (NSCLC) tumors treated with pulsed electric fields. J Immunother Cancer. 2022;10(Suppl 2):A733–A735. doi:10.1136/jitc-2022-SITC2022.0702
  • Ji Y, Luan S, Yang X, et al. Efficacy of bronchoscopic intratumoral injection of endostar and cisplatin in lung squamous cell carcinoma patients underwent conventional chemoradiotherapy. Open Med. 2023;18(1). doi:10.1515/med-2023-0640
  • Demaio A, Sterman D. Bronchoscopic intratumoural therapies for non-small cell lung cancer. Eur Respir Rev. 2020;29(156):200028. doi:10.1183/16000617.0028-2020