116
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Modulations of emotional attention and spatial attention on human visual cortical activities

, , , , , , & show all
Pages 375-384 | Published online: 17 May 2019

References

  • Carrasco M. Visual attention: the past 25 years. Vision Res. 2011;51(13):1484–1525. doi:10.1016/j.visres.2011.04.01221549742
  • Posner MI. Components of visual orienting. Attention Perform X Hillsdale. 1984;32(4):531–556.
  • Desimone R. Visual attention mediated by biased competition in extrastriate visual cortex. Philos Trans R Soc Lond B Biol Sci. 1998;353(1373):1245–1255. doi:10.1098/rstb.1998.02809770219
  • Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron. 1999;22(4):751–761.10230795
  • Mayo JP, Maunsell JH. Graded neuronal modulations related to visual spatial attention. J Neurosci. 2016;36(19):5353–5361. doi:10.1523/JNEUROSCI.0192-16.201627170131
  • Carretie L, Hinojosa JA, Lopez-Martin S, Tapia M. An electrophysiological study on the interaction between emotional content and spatial frequency of visual stimuli. Neuropsychologia. 2007;45(6):1187–1195. doi:10.1016/j.neuropsychologia.2006.10.01317118408
  • Constantinidis C, Steinmetz MA. Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. Cereb Cortex. 2001;11(7):581–591.11415960
  • Downar J, Crawley AP, Mikulis DJ, Davis KD. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiol. 2002;87(1):615–620. doi:10.1152/jn.00636.200111784775
  • Shulman GL, Astafiev SV, Franke D, et al. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J Neurosci. 2009;29(14):4392–4407. doi:10.1523/JNEUROSCI.5609-08.200919357267
  • Corbetta M, Shulman GL. Human cortical mechanisms of visual attention during orienting and search. Philos Trans R Soc Lond B Biol Sci. 1998;353(1373):1353–1362. doi:10.1098/rstb.1998.02899770228
  • Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci. 2000;23:315–341. doi:10.1146/annurev.neuro.23.1.31510845067
  • Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi:10.1146/annurev.ne.18.030195.0012057605061
  • Galvez-Pol A, Calvo-Merino B, Capilla A, Forster B. Persistent recruitment of somatosensory cortex during active maintenance of hand images in working memory. Neuroimage. 2018;174:153–163. doi:10.1016/j.neuroimage.2018.03.02429548846
  • Galvez-Pol A, Forster B, Calvo-Merino B. Modulation of motor cortex activity in a visual working memory task of hand images. Neuropsychologia. 2018;117:75–83. doi:10.1016/j.neuropsychologia.2018.05.00529738793
  • Martinez A, Anllo-Vento L, Sereno MI, et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci. 1999;2(4):364–369. doi:10.1038/727410204544
  • Squire RF, Noudoost B, Schafer RJ, Moore T. Prefrontal contributions to visual selective attention. Annu Rev Neurosci. 2013;36:451–466. doi:10.1146/annurev-neuro-062111-15043923841841
  • Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–215. doi:10.1038/nrn75511994752
  • Frischen A, Eastwood JD, Smilek D. Visual search for faces with emotional expressions. Psychol Bull. 2008;134(5):662–676. doi:10.1037/0033-2909.134.5.66218729567
  • Maratos FA, Senior C, Mogg K, Bradley BP, Rippon G. Early gamma-band activity as a function of threat processing in the extrastriate visual cortex. Cogn Neurosci. 2012;3(1):62–68. doi:10.1080/17588928.2011.61398922328903
  • Pourtois G, Grandjean D, Sander D, Vuilleumier P. Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cereb Cortex. 2004;14(6):619–633. doi:10.1093/cercor/bhh02315054077
  • Vuilleumier P, Driver J. Modulation of visual processing by attention and emotion: windows on causal interactions between human brain regions. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):837–855. doi:10.1098/rstb.2007.209217395574
  • Vuilleumier P. How brains beware: neural mechanisms of emotional attention. Trends Cogn Sci. 2005;9(12):585–594. doi:10.1016/j.tics.2005.10.01116289871
  • Carretie L. Exogenous (automatic) attention to emotional stimuli: a review. Cogn Affect Behav Neurosci. 2014;14(4):1228–1258. doi:10.3758/s13415-014-0270-224683062
  • de Gelder B, Hortensius R, Tamietto M. Attention and awareness each influence amygdala activity for dynamic bodily expressions – a short review. Front Integr Neurosci. 2012;6:54. doi:10.3389/fnint.2012.0005422876223
  • Öhman A. Automaticity and the amygdala: nonconscious responses to emotional faces. Curr Dir Psychol Sci. 2002;11(2):62–66. doi:10.1111/1467-8721.00169
  • Pourtois G, Schettino A, Vuilleumier P. Brain mechanisms for emotional influences on perception and attention: what is magic and what is not. Biol Psychol. 2013;92(3):492–512. doi:10.1016/j.biopsycho.2012.02.00722373657
  • Keil A, Moratti S, Sabatinelli D, Bradley MM, Lang PJ. Additive effects of emotional content and spatial selective attention on electrocortical facilitation. Cereb Cortex. 2005;15(8):1187–1197. doi:10.1093/cercor/bhi00115590910
  • Wendt J, Weike AI, Lotze M, Hamm AO. The functional connectivity between amygdala and extrastriate visual cortex activity during emotional picture processing depends on stimulus novelty. Biol Psychol. 2011;86(3):203–209. doi:10.1016/j.biopsycho.2010.11.00921130141
  • Pessoa L, Kastner S, Ungerleider LG. Attentional control of the processing of neural and emotional stimuli. Brain Res Cogn Brain Res. 2002;15(1):31–45.12433381
  • Vuilleumier P, Armony JL, Driver J, Dolan RJ. Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron. 2001;30(3):829–841.11430815
  • Theeuwes J. Top-down and bottom-up control of visual selection. Acta Psychol (Amst). 2010;135(2):77–99. doi:10.1016/j.actpsy.2010.02.00620507828
  • Fichtenholtz HM, Hopfinger JB, Graham R, Detwiler JM, LaBar KS. Event-related potentials reveal temporal staging of dynamic facial expression and gaze shift effects on attentional orienting. Soc Neurosci. 2009;4(4):317–331. doi:10.1080/1747091090280948719274577
  • Engel SA, Glover GH, Wandell BA. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex. 1997;7(2):181–192.9087826
  • Sereno MI, Dale AM, Reppas JB, et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 1995;268(5212):889–893.7754376
  • DeYoe EA, Carman GJ, Bandettini P, et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci U S A. 1996;93(6):2382–2386.8637882
  • Slotnick SD, Yantis S. Efficient acquisition of human retinotopic maps. Hum Brain Mapp. 2003;18(1):22–29. doi:10.1002/hbm.1007712454909
  • Wade AR, Brewer AA, Rieger JW, Wandell BA. Functional measurements of human ventral occipital cortex: retinotopy and colour. Philos Trans R Soc Lond B Biol Sci. 2002;357(1424):963–973. doi:10.1098/rstb.2002.110812217168
  • Smith AM, Lewis BK, Ruttimann UE, et al. Investigation of low frequency drift in fMRI signal. Neuroimage. 1999;9(5):526–533. doi:10.1006/nimg.1999.043510329292
  • Kourtzi Z, Kanwisher N. Activation in human MT/MST by static images with implied motion. J Cogn Neurosci. 2000;12(1):48–55.10769305
  • Coull JT, Frith CD. Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention. Neuroimage. 1998;8(2):176–187. doi:10.1006/nimg.1998.03549740760
  • Schultz J, Lennert T. BOLD signal in intraparietal sulcus covaries with magnitude of implicitly driven attention shifts. Neuroimage. 2009;45(4):1314–1328. doi:10.1016/j.neuroimage.2009.01.01219349243
  • Silk TJ, Bellgrove MA, Wrafter P, Mattingley JB, Cunnington R. Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus. Neuroimage. 2010;53(2):718–724. doi:10.1016/j.neuroimage.2010.06.06820615473
  • Gillebert CR, Mantini D, Thijs V, Sunaert S, Dupont P, Vandenberghe R. Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain. 2011;134(Pt 6):1694–1709. doi:10.1093/brain/awr08521576110
  • Cant JS, Goodale MA. Attention to form or surface properties modulates different regions of human occipitotemporal cortex. Cereb Cortex. 2007;17(3):713–731. doi:10.1093/cercor/bhk02216648452
  • Connor CE, Preddie DC, Gallant JL, Van Essen DC. Spatial attention effects in macaque area V4. J Neurosci. 1997;17(9):3201–3214.9096154
  • Niemeier M, Goltz HC, Kuchinad A, Tweed DB, Vilis T. A contralateral preference in the lateral occipital area: sensory and attentional mechanisms. Cereb Cortex. 2005;15(3):325–331. doi:10.1093/cercor/bhh13415269109
  • Roe AW, Chelazzi L, Connor CE, et al. Toward a unified theory of visual area V4. Neuron. 2012;74(1):12–29. doi:10.1016/j.neuron.2012.03.01122500626
  • Large ME, Aldcroft A, Vilis T. Task-related laterality effects in the lateral occipital complex. Brain Res. 2007;1128(1):130–138. doi:10.1016/j.brainres.2006.10.02317141747
  • Murray SO, Wojciulik E. Attention increases neural selectivity in the human lateral occipital complex. Nat Neurosci. 2004;7(1):70–74. doi:10.1038/nn116114647291
  • Scholte HS, Sligte I, Groen I, Lamme V, Ghebreab S. The posterior part of the lateral occipital complex analyzes the spatial correlation structure of natural visual scenes. J Vis. 2013;13(9):1098. doi:10.1167/13.9.1098
  • Gandhi SP, Heeger DJ, Boynton GM. Spatial attention affects brain activity in human primary visual cortex. Proc Natl Acad Sci U S A. 1999;96(6):3314–3319.10077681
  • Somers DC, Dale AM, Seiffert AE, Tootell RB. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc Natl Acad Sci U S A. 1999;96(4):1663–1668.9990081
  • Watanabe T, Sasaki Y, Miyauchi S, et al. Attention-regulated activity in human primary visual cortex. J Neurophysiol. 1998;79(4):2218–2221. doi:10.1152/jn.1998.79.4.22189535981
  • LaConte SM, Ngan SC, Hu X. Wavelet transform-based Wiener filtering of event-related fMRI data. Magn Reson Med. 2000;44(5):746–757. doi:10.1002/1522-2594(200011)44:5<746::AID-MRM13>3.0.CO;2-O11064410
  • Liu T, Pestilli F, Carrasco M. Transient attention enhances perceptual performance and FMRI response in human visual cortex. Neuron. 2005;45(3):469–477. doi:10.1016/j.neuron.2004.12.03915694332
  • Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985;229(4715):782–784.4023713
  • Reynolds JH, Chelazzi L, Desimone R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci. 1999;19(5):1736–1753.10024360
  • Bradley MM, Sabatinelli D, Lang PJ, Fitzsimmons JR, King W, Desai P. Activation of the visual cortex in motivated attention. Behav Neurosci. 2003;117(2):369–380.12708533
  • Gomez A, Rothkirch M, Kaul C, et al. Emotion modulates the effects of endogenous attention on retinotopic visual processing. Neuroimage. 2011;57(4):1542–1551. doi:10.1016/j.neuroimage.2011.05.07221664281
  • Sabatinelli D, Bradley MM, Fitzsimmons JR, Lang PJ. Parallel amygdala and inferotemporal activation reflect emotional intensity and fear relevance. Neuroimage. 2005;24(4):1265–1270. doi:10.1016/j.neuroimage.2004.12.01515670706
  • Rotshtein P, Malach R, Hadar U, Graif M, Hendler T. Feeling or features: different sensitivity to emotion in high-order visual cortex and amygdala. Neuron. 2001;32(4):747–757.11719213
  • Brosch T, Pourtois G, Sander D, Vuilleumier P. Additive effects of emotional, endogenous, and exogenous attention: behavioral and electrophysiological evidence. Neuropsychologia. 2011;49(7):1779–1787. doi:10.1016/j.neuropsychologia.2011.02.05621382388
  • Hietanen JK, Kirjavainen I, Nummenmaa L. Additive effects of affective arousal and top-down attention on the event-related brain responses to human bodies. Biol Psychol. 2014;103:167–175. doi:10.1016/j.biopsycho.2014.09.00325224182