234
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Electroencephalographic Theta-Band Oscillatory Dynamics Represent Attentional Bias to Subjective Preferences in Value-Based Decisions

ORCID Icon, , , & ORCID Icon
Pages 149-158 | Published online: 15 Feb 2021

References

  • Pisauro MA, Fouragnan E, Retzler C, Philiastides MG. Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI. Nat Commun. 2017;8(1). doi:10.1038/ncomms15808
  • Krajbich I, Armel C, Rangel A. Visual fixations and the computation and comparison of value in simple choice. Nat Neurosci. 2010;13(10):1292–1298. doi:10.1038/nn.2635
  • Plassmann H, Venkatraman V, Huettel S, Yoon C. Consumer neuroscience: applications, challenges, and possible solutions. J Market Res. 2015;52(4):427–435. doi:10.1509/jmr.14.0048
  • Rangel A, Hare T. Neural computations associated with goal-directed choice. Curr Opin Neurobiol. 2010;20(2):262–270. doi:10.1016/j.conb.2010.03.001
  • Rangel A, Camerer C, Montague PR. A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci. 2008;9(7):545–556. doi:10.1038/nrn2357
  • Telpaz A, Webb R, Levy DJ. Using EEG to predict consumers’ future choices. J Market Res. 2015;52(4):511–529. doi:10.1509/jmr.13.0564
  • Goto N, Mushtaq F, Shee D, et al. Neural signals of selective attention are modulated by subjective preferences and buying decisions in a virtual shopping task. Biol Psychol. 2017;128:11–20. doi:10.1016/j.biopsycho.2017.06.004
  • Tyson-Carr JA, Kokmotou K, Soto V, et al. The neural correlates of economic value and valuation context: an event-related potentials study. J Neurophysiol. 2018;119(5):1924–1933. doi:10.1152/jn.00524.2017
  • Brosch T, Sander D. Neurocognitive mechanisms underlying value-based decision-making: from core values to economic value. Front Hum Neurosci. 2013;7(398). doi:10.3389/fnhum.2013.00398
  • Lim S-L, O’Doherty J, Rangel A. The decision value computations in the vmPFC and striatum use a relative value code that is guided by visual attention. J Neurosci. 2011;31:13214–13223. doi:10.1523/JNEUROSCI.1246-11.2011
  • Hare T, Malmaud J, Rangel A. Focusing attention on the health aspects of foods changes value signals in vmPFC and improves dietary choice. J Neurosci. 2011;31:11077–11087. doi:10.1523/JNEUROSCI.6383-10.2011
  • Levy D, Glimcher P. Comparing apples and oranges: using reward-specific and reward-general subjective value representation in the brain. J Neurosci. 2011;31:14693–14707. doi:10.1523/JNEUROSCI.2218-11.2011
  • Armel KC, Beaumel A, Rangel A. Biasing simple choices by manipulating relative visual attention. Judgm Decis Mak. 2008;3(June):396–403.
  • Shimojo S, Simion C, Shimojo E, Scheier C. Gaze bias both reflects and influences preference. Nat Neurosci. 2003;6(12):1317–1322.
  • Kappenman ES, Farrens JL, Luck SJ, Proudfit G. Behavioral and ERP measures of attentional bias to threat in the dot-probe task: poor reliability and lack of correlation with anxiety. Front Psychol. 2014;5:1368. doi:10.3389/fpsyg.2014.01368
  • Liu Y, Wang P, Wang G. The priority of goal-relevant information and evolutionarily threatening information in early attention processing: evidence from behavioral and ERP study. Sci Rep. 2020;10(1):8008. doi:10.1038/s41598-020-65062-5
  • Buodo G, Sarlo M, Munafò M. The neural correlates of attentional bias in blood phobia as revealed by the N2pc. Soc Cogn Affect Neurosci. 2010;5(1):29–38. doi:10.1093/scan/nsp050
  • Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18(8):414–421. doi:10.1016/j.tics.2014.04.012
  • Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci. 2017;40:208–218. doi:10.1016/j.tins.2017.02.004
  • Biasiucci A, Franceschiello B, Murray MM. Electroencephalography. Curr Biol. 2019;29(3):R80–R85. doi:10.1016/j.cub.2018.11.052
  • Foucher JR, Otzenberger H, Gounot D. The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. BMC Neurosci. 2003;4:22. doi:10.1186/1471-2202-4-22
  • Kawasaki M, Yamaguchi Y. Effects of subjective preference of colors on attention-related occipital theta oscillations. Neuroimage. 2012;59(1):808–814. doi:10.1016/j.neuroimage.2011.07.042
  • Diao L, Qi S, Xu M, Fan L, Yang D. Electroencephalographic theta oscillatory dynamics reveal attentional bias to angry faces. Neurosci Lett. 2017;656:31–36. doi:10.1016/j.neulet.2017.06.047
  • Dowdall JR, Luczak A, Tata MS. Temporal variability of the N2pc during efficient and inefficient visual search. Neuropsychologia. 2012;50(10):2442–2453. doi:10.1016/j.neuropsychologia.2012.06.015
  • Mas-Herrero E, Marco-Pallarés J. Theta oscillations integrate functionally segregated sub-regions of the medial prefrontal cortex. Neuroimage. 2016;143:166–174. doi:10.1016/j.neuroimage.2016.08.024
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21. doi:10.1016/j.jneumeth.2003.10.009
  • Kayser J, Tenke CE. Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks. Clin Neurophysiol. 2006;117(2):348–368. doi:10.1016/j.clinph.2005.08.034
  • Dippel G, Muckschel M, Ziemssen T, Beste C. Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry - implications for the norepinephrine system during inhibitory control. Neuroimage. 2017;157:575–585. doi:10.1016/j.neuroimage.2017.06.037
  • Strait CE, Blanchard TC, Hayden BY. Reward value comparison via mutual inhibition in ventromedial prefrontal cortex. Neuron. 2014;82(6):1357–1366. doi:10.1016/j.neuron.2014.04.032
  • Öhman A Fear and anxiety as emotional phenomena: clinical phenomenology, evolutionary perspectives, and information-processing mechanisms. 1993.
  • Anderson BA, Laurent PA, Yantis S. Generalization of value-based attentional priority. Vis Cogn. 2012;20(6):647–658. doi:10.1080/13506285.2012.679711
  • Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18(1):193–222. doi:10.1146/annurev.ne.18.030195.001205
  • Deco G, Rolls ET. Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. J Neurophysiol. 2005;94(1):295–313. doi:10.1152/jn.01095.2004
  • Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38(1):433–447. doi:10.1146/annurev-neuro-071013-014030
  • Rajan A, Siegel SN, Liu Y, Bengson J, Mangun GR, Ding M. Theta oscillations index frontal decision-making and mediate reciprocal frontal–parietal interactions in willed attention. Cereb Cortex. 2018;29(7):2832–2843. doi:10.1093/cercor/bhy149
  • Wen X, Liu Y, Yao L, Ding M. Top-down regulation of default mode activity in spatial visual attention. J Neurosci. 2013;33(15):6444–6453. doi:10.1523/JNEUROSCI.4939-12.2013
  • Hillyard SA, Vogel EK, Luck SJ, Humphreys GW, Duncan J, Treisman A. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Transact Royal Soc B. 1998;353(1373):1257–1270. doi:10.1098/rstb.1998.0281
  • Luck SJ, Chelazzi L, Hillyard SA, Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997;77(1):24–42. doi:10.1152/jn.1997.77.1.24
  • Sauseng P, Klimesch W, Schabus M, Doppelmayr M. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol. 2005;57(2):97–103. doi:10.1016/j.ijpsycho.2005.03.018
  • Cooper PS, Wong AS, Fulham WR, et al. Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. Neuroimage. 2015;108:354–363. doi:10.1016/j.neuroimage.2014.12.028