345
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Interoception in Autism: A Narrative Review of Behavioral and Neurobiological Data

ORCID Icon, &
Pages 1841-1853 | Received 31 Jan 2024, Accepted 13 Apr 2024, Published online: 02 May 2024

References

  • Damasio A, Damasio H. Feelings are the source of consciousness. Neural Comput. 2022;35(3):277–286. doi:10.1162/neco_a_01521
  • Carvalho GB, Damasio A. Interoception and the origin of feelings: a new synthesis. BioEssays. 2021;43(6):2000261. doi:10.1002/bies.202000261
  • Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–666. doi:10.1038/nrn894
  • Craig A B. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13(4):500–505. doi:10.1016/S0959-4388(03)00090-4
  • Cameron OG. Interoception: the inside story—a model for psychosomatic processes. Psychosom Med. 2001;63(5):697–710. doi:10.1097/00006842-200109000-00001
  • Damasio A, Carvalho GB. The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci. 2013;14(2):143–152. doi:10.1038/nrn3403
  • Crucianelli L, Ehrsson HH. The role of the skin in interoception: a neglected organ? Perspect Psychol Sci. 2023;18(1):224–238. doi:10.1177/17456916221094509
  • Crucianelli L, Enmalm A, Ehrsson HH. Interoception as independent cardiac, thermosensory, nociceptive, and affective touch perceptual submodalities. Biol Psychol. 2022;172:108355. doi:10.1016/j.biopsycho.2022.108355
  • Craig A. A new view of pain as a homeostatic emotion. Trends Neurosci. 2003;26(6):303–307. doi:10.1016/S0166-2236(03)00123-1
  • Khalsa SS, Adolphs R, Cameron OG, et al. Interoception and Mental Health: a Roadmap. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(6):501–513. doi:10.1016/j.bpsc.2017.12.004
  • Chen WG, Schloesser D, Arensdorf AM, et al. The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 2021;44(1):3–16. doi:10.1016/j.tins.2020.10.007
  • Berntson GG, Khalsa SS. Neural circuits of interoception. Trends Neurosci. 2021;44(1):17–28. doi:10.1016/j.tins.2020.09.011
  • Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci. 2017;nsw154. doi:10.1093/scan/nsw154
  • James W. The Principles of Psychology. Vol. 1. Henry Holt and Co; 1890. doi:10.1037/10538-000
  • Damasio AR. Feeling & Knowing: Making Minds Conscious. 1st ed. Pantheon Books; 2021.
  • Zhou H, Gao Q, Chen W, Wei Q. Action understanding promoted by interoception in children: a developmental model. Front Psychol. 2022;13:724677. doi:10.3389/fpsyg.2022.724677
  • Bechara A, Damasio AR. The somatic marker hypothesis: a neural theory of economic decision. Games Econ Behav. 2005;52(2):336–372. doi:10.1016/j.geb.2004.06.010
  • Pollatos O, Mönkemöller K, Groppe K, Elsner B. Interoceptive accuracy is associated with benefits in decision making in children. Front Psychol. 2023;13:1070037. doi:10.3389/fpsyg.2022.1070037
  • Koreki A, Goeta D, Ricciardi L, et al. The relationship between interoception and agency and its modulation by heartbeats: an exploratory study. Sci Rep. 2022;12(1):13624. doi:10.1038/s41598-022-16569-6
  • Baiano C, Job X, Kirsch LP, Auvray M. Interoceptive abilities facilitate taking another’s spatial perspective. Sci Rep. 2023;13(1):10064. doi:10.1038/s41598-023-36173-6
  • Feldman MJ, MacCormack JK, Bonar AS, Lindquist KA. Interoceptive ability moderates the effect of physiological reactivity on social judgment. Emotion. 2023. doi:10.1037/emo0001210
  • Von Mohr M, Finotti G, Esposito G, Bahrami B, Tsakiris M. Social interoception: perceiving events during cardiac afferent activity makes people more suggestible to other people’s influence. Cognition. 2023;238:105502. doi:10.1016/j.cognition.2023.105502
  • Azevedo RT, Von Mohr M, Tsakiris M. From the viscera to first impressions: phase-dependent cardio-visual signals bias the perceived trustworthiness of faces. Psychol Sci. 2023;34(1):120–131. doi:10.1177/09567976221131519
  • Engelen T, Solcà M, Tallon-Baudry C. Interoceptive rhythms in the brain. Nat Neurosci. 2023. doi:10.1038/s41593-023-01425-1
  • Quadt L, Critchley H, Nagai Y. Cognition, emotion, and the central autonomic network. Auton Neurosci. 2022;238:102948. doi:10.1016/j.autneu.2022.102948
  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. DSM-5-TR. American Psychiatric Association Publishing; 2022.
  • Djerassi M, Ophir S, Atzil S. What is social about autism? The role of allostasis-driven learning. Brain Sci. 2021;11(10):1269. doi:10.3390/brainsci11101269
  • Proff I, Williams GL, Quadt L, Garfinkel SN. Sensory processing in autism across exteroceptive and interoceptive domains. Psychol Neurosci. 2022;15(2):105–130. doi:10.1037/pne0000262
  • Yang H, Zhou H, Li Y, et al. Decreased interoceptive accuracy in children with autism spectrum disorder and with comorbid attention deficit/hyperactivity disorder. Autism Res. 2022;15(4):729–739. doi:10.1002/aur.2679
  • Palser ER, Fotopoulou A, Pellicano E, Kilner JM. Dissociation in how core autism features relate to interoceptive dimensions: evidence from cardiac awareness in children. J Autism Dev Disord. 2020;50(2):572–582. doi:10.1007/s10803-019-04279-4
  • Palser ER, Fotopoulou A, Pellicano E, Kilner JM. The link between interoceptive processing and anxiety in children diagnosed with autism spectrum disorder: extending adult findings into a developmental sample. Biol Psychol. 2018;136:13–21. doi:10.1016/j.biopsycho.2018.05.003
  • Arnaud S. Self‐consciousness in autism: a third‐person perspective on the self. Mind Lang. 2022;37(3):356–372. doi:10.1111/mila.12356
  • Noel J, Lytle M, Cascio C, Wallace MT. Disrupted integration of exteroceptive and interoceptive signaling in autism spectrum disorder. Autism Res. 2018;11(1):194–205. doi:10.1002/aur.1880
  • Schauder KB, Mash LE, Bryant LK, Cascio CJ. Interoceptive ability and body awareness in autism spectrum disorder. J Exp Child Psychol. 2015;131:193–200. doi:10.1016/j.jecp.2014.11.002
  • Williams ZJ, Suzman E, Bordman SL, et al. Characterizing interoceptive differences in autism: a systematic review and meta-analysis of case–control studies. J Autism Dev Disord. 2023;53(3):947–962. doi:10.1007/s10803-022-05656-2
  • Garfinkel SN, Tiley C, O’Keeffe S, Harrison NA, Seth AK, Critchley HD. Discrepancies between dimensions of interoception in autism: implications for emotion and anxiety. Biol Psychol. 2016;114:117–126. doi:10.1016/j.biopsycho.2015.12.003
  • Lai MC, Kassee C, Besney R, et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry. 2019;6(10):819–829. doi:10.1016/S2215-0366(19)30289-5
  • Micai M, Fatta LM, Gila L, et al. Prevalence of co-occurring conditions in children and adults with autism spectrum disorder: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2023;155:105436. doi:10.1016/j.neubiorev.2023.105436
  • Barrett LF, Simmons WK. Interoceptive predictions in the brain. Nat Rev Neurosci. 2015;16(7):419–429. doi:10.1038/nrn3950
  • Failla M D, Bryant L K, Heflin B H, Mash L E, Schauder K, Davis S, Gerdes M B, Weitlauf A, Rogers B P and Cascio C J. (2020). Neural Correlates of Cardiac Interoceptive Focus Across Development: Implications for Social Symptoms in Autism Spectrum Disorder. Autism Research, 13(6), 908–920. 10.1002/aur.2289
  • Palser ER, Galvez-Pol A, Palmer CE, et al. Reduced differentiation of emotion-associated bodily sensations in autism. Autism. 2021;25(5):1321–1334. doi:10.1177/1362361320987950
  • Failla MD, Gerdes MB, Williams ZJ, et al. Increased pain sensitivity and pain-related anxiety in individuals with autism. Pain Reports. 2020;5():1–10. doi:10.1097/PR9.0000000000000861
  • Failla MD, Peters BR, Karbasforoushan H, et al. Intrainsular connectivity and somatosensory responsiveness in young children with ASD. Mol Autism. 2017;8(1):25. doi:10.1186/s13229-017-0143-y
  • Vaughan S, McGlone F, Poole H, Moore DJ. A quantitative sensory testing approach to pain in autism spectrum disorders. J Autism Dev Disord. 2020;50(5):1607–1620. doi:10.1007/s10803-019-03918-0
  • Trevisan DA, Parker T, McPartland JC. First-hand accounts of interoceptive difficulties in autistic adults. J Autism Dev Disord. 2021;51(10):3483–3491. doi:10.1007/s10803-020-04811-x
  • DuBois D, Ameis SH, Lai M, Casanova MF, Desarkar P. Interoception in Autism Spectrum Disorder: a review. Int J Dev Neurosci. 2016;52(1):104–111. doi:10.1016/j.ijdevneu.2016.05.001
  • Nicholson T, Williams D, Carpenter K, Kallitsounaki A. Interoception is impaired in children, but not adults, with autism spectrum disorder. J Autism Dev Disord. 2019;49(9):3625–3637. doi:10.1007/s10803-019-04079-w
  • Shah P, Hall R, Catmur C, Bird G. Alexithymia, not autism, is associated with impaired interoception. Cortex. 2016;81:215–220. doi:10.1016/j.cortex.2016.03.021
  • Butera CD, Harrison L, Kilroy E, et al. Relationships between alexithymia, interoception, and emotional empathy in autism spectrum disorder. Autism. 2022;27(3):690–703. doi:10.1177/13623613221111310
  • Ben Hassen N, Molins F, Garrote-Petisco D, Serrano MÁ. Emotional regulation deficits in autism spectrum disorder: the role of alexithymia and interoception. Res Dev Disabil. 2023;132:104378. doi:10.1016/j.ridd.2022.104378
  • Suksasilp C, Garfinkel SN. Towards a comprehensive assessment of interoception in a multi-dimensional framework. Biol Psychol. 2022;168:108262. doi:10.1016/j.biopsycho.2022.108262
  • Murphy J, Brewer R, Plans D, Khalsa SS, Catmur C, Bird G. Testing the Independence of self-reported interoceptive accuracy and attention. Q J Exp Psychol. 2020;73(1):115–133. doi:10.1177/1747021819879826
  • Nicolardi V, Fanizza I, Accogli G, Macchitella L, Scoditti S, Trabacca A. Pain assessment in autism: updating the ethical and methodological challenges through a state-of-The-art review. Neurol Sci. 2023;44(11):3853–3861. doi:10.1007/s10072-023-06942-2
  • Trevisan DA, Mehling WE, McPartland JC. Adaptive and maladaptive bodily awareness: distinguishing interoceptive sensibility and interoceptive attention from anxiety-induced somatization in autism and alexithymia. Autism Res. 2021;14(2):240–247. doi:10.1002/aur.2458
  • Shipkova M, Butera CD, Flores GD, et al. Caregiver and youth inter‐rater assessment agreement in autism spectrum disorder, developmental coordination disorder, and typical development. Autism Res. 2024:aur.3110. doi:10.1002/aur.3110
  • Adams KL, Murphy J, Catmur C, Bird G. The role of interoception in the overlap between eating disorders and autism: methodological considerations. Eur Eat Disord Rev. 2022;30(5):501–509. doi:10.1002/erv.2905
  • Kinnaird E, Stewart C, Tchanturia K. Investigating alexithymia in autism: a systematic review and meta-analysis. Eur Psychiatry. 2019;55:80–89. doi:10.1016/j.eurpsy.2018.09.004
  • Bonaz B, Lane RD, Oshinsky ML, et al. Diseases, disorders, and comorbidities of interoception. Trends Neurosci. 2021;44(1):39–51. doi:10.1016/j.tins.2020.09.009
  • Brewer R, Cook R, Bird G. Alexithymia: a general deficit of interoception. R Soc Open Sci. 2016;3(10):150664. doi:10.1098/rsos.150664
  • Desmedt O, Luminet O, Walentynowicz M, Corneille O. The new measures of interoceptive accuracy: a systematic review and assessment. Neurosci Biobehav Rev. 2023;153:105388. doi:10.1016/j.neubiorev.2023.105388
  • Critchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron. 2013;77(4):624–638. doi:10.1016/j.neuron.2013.02.008
  • Critchley HD, Wiens S, Rotshtein P, Öhman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–195. doi:10.1038/nn1176
  • Petzschner FH, Garfinkel SN, Paulus MP, Koch C, Khalsa SS. Computational models of interoception and body regulation. Trends Neurosci. 2021;44(1):63–76. doi:10.1016/j.tins.2020.09.012
  • Quigley KS, Kanoski S, Grill WM, Barrett LF, Tsakiris M. Functions of interoception: from energy regulation to experience of the self. Trends Neurosci. 2021;44(1):29–38. doi:10.1016/j.tins.2020.09.008
  • Sennesh E, Theriault J, Brooks D, Van De Meent JW, Barrett LF, Quigley KS. Interoception as modeling, allostasis as control. Biol Psychol. 2022;167:108242. doi:10.1016/j.biopsycho.2021.108242
  • Seth AK, Friston KJ. Active interoceptive inference and the emotional brain. Philos Trans R Soc B Biol Sci. 2016;371(1708):20160007. doi:10.1098/rstb.2016.0007
  • Hodson R, Mehta M, Smith R. The empirical status of predictive coding and active inference. Neurosci Biobehav Rev. 2024;157:105473. doi:10.1016/j.neubiorev.2023.105473
  • Haruno M, Wolpert DM, Kawato M. MOSAIC model for sensorimotor learning and control. Neural Comput. 2001;13(10):2201–2220. doi:10.1162/089976601750541778
  • Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127–138. doi:10.1038/nrn2787
  • Friston K. A theory of cortical responses. Philos Trans R Soc B Biol Sci. 2005;360(1456):815–836. doi:10.1098/rstb.2005.1622
  • Ortiz-Tudela J, Nicholls VI, Clarke A. Parameters of prediction: multidimensional characterization of top-down influence in visual perception. Neurosci Biobehav Rev. 2023;153:105369. doi:10.1016/j.neubiorev.2023.105369
  • Qin C, Michon F, Onuki Y, et al. Predictability alters information flow during action observation in human electrocorticographic activity. Cell Rep. 2023;42(11):113432. doi:10.1016/j.celrep.2023.113432
  • Hatfield TR, Brown RF, Giummarra MJ, Lenggenhager B. Autism spectrum disorder and interoception: abnormalities in global integration? Autism. 2019;23(1):212–222. doi:10.1177/1362361317738392
  • Happé F, Frith U. The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord. 2006;36(1):5–25. doi:10.1007/s10803-005-0039-0
  • Puts NAJ, Wodka EL, Harris AD, et al. Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Res. 2017;10(4):608–619. doi:10.1002/aur.1691
  • Failla MD, Moana-Filho EJ, Essick GK, Baranek GT, Rogers BP, Cascio CJ. Initially intact neural responses to pain in autism are diminished during sustained pain. Autism. 2018;22(6):669–683. doi:10.1177/1362361317696043
  • Quattrocki E, Friston K. Autism, oxytocin and interoception. Neurosci Biobehav Rev. 2014;47:410–430. doi:10.1016/j.neubiorev.2014.09.012
  • Sapey-Triomphe LA, Pattyn L, Weilnhammer V, Sterzer P, Wagemans J. Neural correlates of hierarchical predictive processes in autistic adults. Nat Commun. 2023;14(1):3640. doi:10.1038/s41467-023-38580-9
  • Cannon J, O’Brien AM, Bungert L, Sinha P. Prediction in Autism spectrum disorder: a systematic review of empirical evidence. Autism Res. 2021;14(4):604–630. doi:10.1002/aur.2482
  • Finnemann JJS, Plaisted-Grant K, Moore J, Teufel C, Fletcher PC. Low-level, prediction-based sensory and motor processes are unimpaired in Autism. Neuropsychologia. 2021;156:107835. doi:10.1016/j.neuropsychologia.2021.107835
  • Ward EK, Buitelaar JK, Hunnius S. Autistic and nonautistic adolescents do not differ in adaptation to gaze direction. Autism Res. 2024;aur.3118. doi:10.1002/aur.3118
  • Moore DJ. Acute pain experience in individuals with autism spectrum disorders: a review. Autism. 2015;19(4):387–399. doi:10.1177/1362361314527839
  • Bogdanova OV, Bogdanov VB, Pizano A, et al. The current view on the paradox of pain in autism spectrum disorders. Front Psychiatry. 2022;13:910824. doi:10.3389/fpsyt.2022.910824
  • Ortiz Rubio A, de María Romero Ayuso DN, Torres Sánchez I, et al. Pain experiences of people diagnosed with autism spectrum disorder: a systematic review of case–control studies. Am J Occup Ther. 2023;77(2):7702185020. doi:10.5014/ajot.2023.050050
  • Hoffman T, Bar-Shalita T, Granovsky Y, et al. Indifference or hypersensitivity? Solving the riddle of the pain profile in individuals with autism. Pain. 2023;164(4):791–803. doi:10.1097/j.pain.0000000000002767
  • Riquelme I, Hatem SM, Sabater-Gárriz Á, Montoya P. A multidimensional investigation of the relationship between skin-mediated somatosensory signals, emotion regulation and behavior problems in autistic children. Front Neurosci. 2023;17:1227173. doi:10.3389/fnins.2023.1227173
  • Chien YL, Chao CC, Wu SW, et al. Small fiber pathology in autism and clinical implications. Neurology. 2020;95(19). doi:10.1212/WNL.0000000000010932
  • Courtemanche AB, Black WR, Reese RM. The relationship between pain, self-injury, and other problem behaviors in young children with autism and other developmental disabilities. Am J Intellect Dev Disabil. 2016;121(3):194–203. doi:10.1352/1944-7558-121.3.194
  • Stein BE, Stanford TR, Rowland BA. Development of multisensory integration from the perspective of the individual neuron. Nat Rev Neurosci. 2014;15(8):520–535. doi:10.1038/nrn3742
  • Lefler Y, Campagner D, Branco T. The role of the periaqueductal gray in escape behavior. Curr Opin Neurobiol. 2020;60:115–121. doi:10.1016/j.conb.2019.11.014
  • Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol. 2019;177:33–72. doi:10.1016/j.pneurobio.2019.02.001
  • Venkatraman A, Edlow BL, Immordino-Yang MH. The brainstem in emotion: a review. Front Neuroanat. 2017;11. doi:10.3389/fnana.2017.00015
  • Agashkov K, Krotov V, Krasniakova M, et al. Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons. Sci Rep. 2019;9(1):19231. doi:10.1038/s41598-019-55462-7
  • De Falco E, Solcà M, Bernasconi F, et al. Single neurons in the thalamus and subthalamic nucleus process cardiac and respiratory signals in humans. Proc Natl Acad Sci. 2024;121(11):e2316365121. doi:10.1073/pnas.2316365121
  • You HJ, Lei J, Pertovaara A. Thalamus: the ‘promoter’ of endogenous modulation of pain and potential therapeutic target in pathological pain. Neurosci Biobehav Rev. 2022;139:104745. doi:10.1016/j.neubiorev.2022.104745
  • Shine JM, Lewis LD, Garrett DD, Hwang K. The impact of the human thalamus on brain-wide information processing. Nat Rev Neurosci. 2023;24(7):416–430. doi:10.1038/s41583-023-00701-0
  • Scarpazza C, Zangrossi A, Huang YC, Sartori G, Massaro S. Disentangling interoceptive abilities in alexithymia. Psychol Res. 2022;86(3):844–857. doi:10.1007/s00426-021-01538-x
  • Dobrushina OR, Arina GA, Dobrynina LA, et al. Sensory integration in interoception: interplay between top-down and bottom-up processing. Cortex. 2021;144:185–197. doi:10.1016/j.cortex.2021.08.009
  • Uddin LQ. Idiosyncratic connectivity in autism: developmental and anatomical considerations. Trends Neurosci. 2015;38(5):261–263. doi:10.1016/j.tins.2015.03.004
  • Tan Y, Yan R, Gao Y, Zhang M, Northoff G. Spatial-topographic nestedness of interoceptive regions within the networks of decision making and emotion regulation: combining ALE meta-analysis and MACM analysis. NeuroImage. 2022;260:119500. doi:10.1016/j.neuroimage.2022.119500
  • Molnar-Szakacs I, Uddin LQ. Anterior insula as a gatekeeper of executive control. Neurosci Biobehav Rev. 2022;139:104736. doi:10.1016/j.neubiorev.2022.104736
  • Azzalini D, Rebollo I, Tallon-Baudry C. Visceral signals shape brain dynamics and cognition. Trends Cognit Sci. 2019;23(6):488–509. doi:10.1016/j.tics.2019.03.007
  • Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The brain-gut-microbiome system: pathways and implications for autism spectrum disorder. Nutrients. 2021;13(12):4497. doi:10.3390/nu13124497
  • Taniya MA, Chung HJ, Al Mamun A, et al. Role of gut microbiome in autism spectrum disorder and its therapeutic regulation. Front Cell Infect Microbiol. 2022;12:915701. doi:10.3389/fcimb.2022.915701
  • Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241–255. doi:10.1038/s41579-020-00460-0
  • Zadok E, Golan O, Lavidor M, Gordon I. Autonomic nervous system responses to social stimuli among autistic individuals: a systematic review and meta-analysis. Autism Res. 2023;aur.3068. doi:10.1002/aur.3068
  • Bufo MR, Guidotti M, Mofid Y, et al. Atypical response to affective touch in children with autism: multi-parametric exploration of the autonomic system. J Clin Med. 2022;11(23):7146. doi:10.3390/jcm11237146
  • Baizer JS. Functional and neuropathological evidence for a role of the brainstem in autism. Front Integr Neurosci. 2021;15:748977. doi:10.3389/fnint.2021.748977
  • Jou RJ, Minshew NJ, Melhem NM, Keshavan MS, Hardan AY. Brainstem volumetric alterations in children with autism. Psychol Med. 2009;39(8):1347–1354. doi:10.1017/S0033291708004376
  • Jou RJ, Frazier TW, Keshavan MS, Minshew NJ, Hardan AY. A two-year longitudinal pilot MRI study of the brainstem in autism. Behav Brain Res. 2013;251:163–167. doi:10.1016/j.bbr.2013.04.021
  • Seif A, Shea C, Schmid S, Stevenson RA. A systematic review of brainstem contributions to autism spectrum disorder. Front Integr Neurosci. 2021;15:760116. doi:10.3389/fnint.2021.760116
  • Fredo ARJ, Kavitha G, Ramakrishnan S. Segmentation and morphometric analysis of subcortical regions in autistic MR brain images using fuzzy Gaussian distribution model-based distance regularised multi-phase level set. Int J Biomed Eng Technol. 2014;15(3):211. doi:10.1504/IJBET.2014.064647
  • Cheung C, Chua SE, Cheung V, et al. White matter fractional anisotropy differences and correlates of diagnostic symptoms in autism. J Child Psychol Psychiatr. 2009;50(9):1102–1112. doi:10.1111/j.1469-7610.2009.02086.x
  • Hanaie R, Mohri I, Kagitani‐Shimono K, et al. White matter volume in the brainstem and inferior parietal lobule is related to motor performance in children with autism spectrum disorder: a voxel-based morphometry study. Autism Res. 2016;9(9):981–992. doi:10.1002/aur.1605
  • Hyde KL, Samson F, Evans AC, Mottron L. Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Hum Brain Mapp. 2010;31(4):556–566. doi:10.1002/hbm.20887
  • Burstein O, Geva R. The brainstem-informed autism framework: early life neurobehavioral markers. Front Integr Neurosci. 2021;15:759614. doi:10.3389/fnint.2021.759614
  • Jure R. The “Primitive Brain Dysfunction” theory of autism: the superior colliculus role. Front Integr Neurosci. 2022;16:797391. doi:10.3389/fnint.2022.797391
  • London EB. Neuromodulation and a reconceptualization of autism spectrum disorders: using the locus coeruleus functioning as an exemplar. Front Neurol. 2018;9:1120. doi:10.3389/fneur.2018.01120
  • Dadalko OI, Travers BG. Evidence for brainstem contributions to autism spectrum disorders. Front Integr Neurosci. 2018;12:47. doi:10.3389/fnint.2018.00047
  • Surgent O, Riaz A, Ausderau KK, et al. Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children. Mol Autism. 2022;13(1):48. doi:10.1186/s13229-022-00524-3
  • Hardan AY, Minshew NJ, Harenski K, Keshavan MS. Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry. 2001;40(6):666–672. doi:10.1097/00004583-200106000-00011
  • Chaddad A, Desrosiers C, Toews M. Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Sci Rep. 2017;7(1):45639. doi:10.1038/srep45639
  • Wagner L, Banchik M, Okada NJ, et al. Associations between thalamocortical functional connectivity and sensory over-responsivity in infants at high likelihood for ASD. Cereb Cortex. 2023;33(12):8075–8086. doi:10.1093/cercor/bhad100
  • Nair A, Jalal R, Liu J, et al. Altered thalamocortical connectivity in 6-week-old infants at high familial risk for autism spectrum disorder. Cereb Cortex. 2021;31(9):4191–4205. doi:10.1093/cercor/bhab078
  • Butera C, Kaplan J, Kilroy E, et al. The relationship between alexithymia, interoception, and neural functional connectivity during facial expression processing in autism spectrum disorder. Neuropsychologia. 2023;180:108469. doi:10.1016/j.neuropsychologia.2023.108469
  • Uddin LQ, Supekar K, Lynch CJ, et al. Salience network–based classification and prediction of symptom severity in children with autism. JAMA Psychiatry. 2013;70(8):869. doi:10.1001/jamapsychiatry.2013.104
  • Nomi JS, Molnar-Szakacs I, Uddin LQ. Insular function in autism: update and future directions in neuroimaging and interventions. Prog Neuropsychopharmacol Biol Psychiatry. 2019;89:412–426. doi:10.1016/j.pnpbp.2018.10.015
  • Odriozola P, Uddin LQ, Lynch CJ, Kochalka J, Chen T, Menon V. Insula response and connectivity during social and non-social attention in children with autism. Soc Cogn Affect Neurosci. 2016;11(3):433–444. doi:10.1093/scan/nsv126
  • Uddin LQ, Kinnison J, Pessoa L, Anderson ML. Beyond the Tripartite Cognition–Emotion–Interoception Model of the human insular cortex. J Cogn Neurosci. 2013;26(1):16–27. doi:10.1162/jocn_a_00462
  • Roy D, Uddin LQ. Atypical core-periphery brain dynamics in autism. Netw Neurosci. 2021;5(2):295–321. doi:10.1162/netn_a_00181
  • Uddin LQ, Menon V. The anterior insula in autism: under-connected and under-examined. Neurosci Biobehav Rev. 2009;33(8):1198–1203. doi:10.1016/j.neubiorev.2009.06.002
  • Farrant K, Uddin LQ. Atypical developmental of dorsal and ventral attention networks in autism. Dev Sci. 2016;19(4):550–563. doi:10.1111/desc.12359
  • Baez AC, Dajani DR, Voorhies W, et al. Parsing heterogeneity of executive function in typically and atypically developing children: a conceptual replication and exploration of social function. J Autism Dev Disord. 2020;50(3):707–718. doi:10.1007/s10803-019-04290-9
  • Xiao J, Chen H, Shan X, et al. Linked social–communication dimensions and connectivity in functional brain networks in autism spectrum disorder. Cereb Cortex. 2021;31(8):3899–3910. doi:10.1093/cercor/bhab057
  • Sigar P, Uddin LQ, Roy D. Altered global modular organization of intrinsic functional connectivity in autism arises from atypical node-level processing. Autism Res. 2023;16(1):66–83. doi:10.1002/aur.2840
  • Liu Y, Wang H, Ding Y. The dynamical biomarkers in functional connectivity of autism spectrum disorder based on dynamic graph embedding. Interdiscip Sci Comput Life Sci. 2023. doi:10.1007/s12539-023-00592-w
  • Garfinkel SN, Schulz A, Tsakiris M. Addressing the need for new interoceptive methods. Biol Psychol. 2022;170:108322. doi:10.1016/j.biopsycho.2022.108322
  • Gabriele E, Spooner R, Brewer R, Murphy J. Dissociations between self-reported interoceptive accuracy and attention: evidence from the Interoceptive Attention Scale. Biol Psychol. 2022;168:108243. doi:10.1016/j.biopsycho.2021.108243
  • Murphy J, Catmur C, Bird G. Classifying individual differences in interoception: implications for the measurement of interoceptive awareness. Psychon Bull Rev. 2019;26(5):1467–1471. doi:10.3758/s13423-019-01632-7
  • Rehbein T, Herrmann DN. Sensory processing in autism spectrum disorder: insights from the periphery? Neurology. 2020;95(19):851–852. doi:10.1212/WNL.0000000000010931