120
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Activation Likelihood Estimation Neuroimaging Meta-Analysis: a Powerful Tool for Emotion Research

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2331-2345 | Received 23 Jan 2024, Accepted 31 May 2024, Published online: 11 Jun 2024

References

  • Deak A. Brain and emotion: cognitive neuroscience of emotions. Rev Psychol. 2011;18(2):71–80.
  • Brooke AH, Harrison NA. Chapter 30 - neuroimaging and emotion. In: Fink G editor. Stress: Concepts, Cognition, Emotion, and Behavior. Academic Press; 2016:251–259. doi:10.1016/B978-0-12-800951-2.00030-3
  • Davis KM, Ryan JL, Aaron VD, Sims JB. PET and SPECT imaging of the brain: history, technical considerations, applications, and radiotracers. Semin Ultrasound CT MR. 2020;41(6):521–529. doi:10.1053/j.sult.2020.08.006
  • Hu X, Zhuang C, Wang F, Liu YJ, Im CH, Zhang D. fNIRS evidence for recognizably different positive emotions. Front Hum Neurosci. 2019;13:120. doi:10.3389/fnhum.2019.00120
  • Junghöfer M, Peyk P, Flaisch T, Schupp HT. Neuroimaging methods in affective neuroscience: selected methodological issues. Prog Brain Res. 2006;156:123–143. doi:10.1016/S0079-6123(06)56007-8
  • Kragel PA, LaBar KS. Decoding the nature of emotion in the brain. Trends Cognit Sci. 2016;20(6):444–455. doi:10.1016/j.tics.2016.03.011
  • Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage. 2002;16(2):331–348. doi:10.1006/nimg.2002.1087
  • Barrett LF, Wager TD. The structure of emotion: evidence from neuroimaging studies. Curr Dir Psychol Sci. 2006;15(2):79–83. doi:10.1111/j.0963-7214.2006.00411.x
  • Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF. The brain basis of emotion: a meta-analytic review. Behav Brain Sci. 2012;35(3):121. doi:10.1017/S0140525X11000446
  • Posner J, Russell JA, Gerber A, et al. The neurophysiological bases of emotion: an fMRI study of the affective circumplex using emotion-denoting words. Hum Brain Mapp. 2009;30(3):883–895. doi:10.1002/hbm.20553
  • Barrett LF, Mesquita B, Ochsner KN, Gross JJ. The experience of emotion. Annu Rev Psychol. 2007;58:373–403. doi:10.1146/annurev.psych.58.110405.085709
  • Ekman P. An argument for basic emotions. Cognition Emotion. 1992;6(3–4):169–200. doi:10.1080/02699939208411068
  • Gu S, Wang F, Cao C, Wu E, Tang YY, Huang JH. An integrative way for studying neural basis of basic emotions with fMRI. Front Neurosci. 2019;13:628. doi:10.3389/fnins.2019.00628
  • Hamann S. Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends Cognit Sci. 2012;16(9):458–466. doi:10.1016/j.tics.2012.07.006
  • Russell JA. Core affect and the psychological construction of emotion. Psychol Rev. 2003;110(1):145–172. doi:10.1037/0033-295x.110.1.145
  • Ebneabbasi A, Mahdipour M, Nejati V, et al. Emotion processing and regulation in major depressive disorder: a 7T resting-state fMRI study. Hum Brain Mapp. 2021;42(3):797–810. doi:10.1002/hbm.25263
  • McKechanie AG, Lawrie SM, Whalley HC, Stanfield AC. A functional MRI facial emotion-processing study of autism in individuals with special educational needs. Psychiatry Res Neuroimaging. 2022;320:111426. doi:10.1016/j.pscychresns.2021.111426
  • van Zutphen L, Siep N, Jacob GA, Goebel R, Arntz A. Emotional sensitivity, emotion regulation and impulsivity in borderline personality disorder: a critical review of fMRI studies. Neurosci Biobehav Rev. 2015;51:64–76. doi:10.1016/j.neubiorev.2015.01.001
  • Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci. 2017;12(1):1–23. doi:10.1093/scan/nsw154
  • Panksepp J. Affective Neuroscience: The Foundations of Human and Animal Emotions. Oxford University Press; 2004.
  • Solms M. The Hidden Spring: A Journey to the Source of Consciousness. Profile Books; 2021.
  • Schiller D, Yu ANC, Alia-Klein N, et al. The Human Affectome. Neurosci Biobehav Rev. 2024;158:105450. doi:10.1016/j.neubiorev.2023.105450
  • Szucs D, Ioannidis JP. Sample size evolution in neuroimaging research: an evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. Neuroimage. 2020;221:117164. doi:10.1016/j.neuroimage.2020.117164
  • Carp J. The secret lives of experiments: methods reporting in the fMRI literature. Neuroimage. 2012;63(1):289–300. doi:10.1016/j.neuroimage.2012.07.004
  • Cremers HR, Wager TD, Yarkoni T. The relation between statistical power and inference in fMRI. PLoS One. 2017;12(11):e0184923. doi:10.1371/journal.pone.0184923
  • Samartsidis P, Montagna S, Nichols TE, Johnson TD. The coordinate-based meta-analysis of neuroimaging data. Stat Sci. 2017;32(4):580–599. doi:10.1214/17-STS624
  • Wager TD, Lindquist M, Kaplan L. Meta-analysis of functional neuroimaging data: current and future directions. Soc Cogn Affect Neurosci. 2007;2(2):150–158. doi:10.1093/scan/nsm015
  • Bowring A, Maumet C, Nichols TE. Exploring the impact of analysis software on task fMRI results. Hum Brain Mapp. 2019;40(11):3362–3384. doi:10.1002/hbm.24603
  • Nani A, Manuello J, Liloia D, Duca S, Costa T, Cauda F. The neural correlates of time: a meta-analysis of neuroimaging studies. J Cogn Neurosci. 2019;31(12):1796–1826. doi:10.1162/jocn_a_01459
  • Smith ML, Glass GV. Meta-analysis of research on class size and its relationship to attitudes and instruction. Am Educ Res J. 1980;17(4):419–433. doi:10.3102/00028312017004419
  • Manuello J, Costa T, Cauda F, Liloia D. Six actions to improve detection of critical features for neuroimaging coordinate-based meta-analysis preparation. Neurosci Biobehav Rev. 2022;137:104659. doi:10.1016/j.neubiorev.2022.104659
  • Müller VI, Cieslik EC, Laird AR, et al. Ten simple rules for neuroimaging meta-analysis. Neurosci Biobehav Rev. 2018;84:151–161. doi:10.1016/j.neubiorev.2017.11.012
  • Morawetz C, Bode S, Derntl B, Heekeren HR. The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: a meta-analysis of fMRI studies. Neurosci Biobehav Rev. 2017;72:111–128. doi:10.1016/j.neubiorev.2016.11.014
  • Caspers J, Zilles K, Beierle C, Rottschy C, Eickhoff SB. A novel meta-analytic approach: mining frequent co-activation patterns in neuroimaging databases. Neuroimage. 2014;90:390–402. doi:10.1016/j.neuroimage.2013.12.024
  • Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM 3D statistical neuroanatomical models from 305 MRI volumes. In: 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference. 1993:1813–1817. doi:10.1109/NSSMIC.1993.373602.
  • Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis revisited. Neuroimage. 2012;59(3):2349–2361. doi:10.1016/j.neuroimage.2011.09.017
  • Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30(9):2907–2926. doi:10.1002/hbm.20718
  • Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage. 2002;16(3 Pt 1):765–780. doi:10.1006/nimg.2002.1131
  • Albajes-Eizagirre A, Solanes A, Vieta E, Radua J. Voxel-based meta-analysis via permutation of subject images (PSI): theory and implementation for SDM. Neuroimage. 2019;186:174–184. doi:10.1016/j.neuroimage.2018.10.077
  • Radua J, Rubia K, Canales-Rodríguez EJ, Pomarol-Clotet E, Fusar-Poli P, Mataix-Cols D. Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Front Psychiatry. 2014;5:13. doi:10.3389/fpsyt.2014.00013
  • Fox PT, Lancaster JL, Laird AR, Eickhoff SB. Meta-analysis in human neuroimaging: computational modeling of large-scale databases. Annu Rev Neurosci. 2014;37:409–434. doi:10.1146/annurev-neuro-062012-170320
  • Salimi-Khorshidi G, Smith SM, Keltner JR, Wager TD, Nichols TE. Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. Neuroimage. 2009;45(3):810–823. doi:10.1016/j.neuroimage.2008.12.039
  • Costa T, Manuello J, Ferraro M, et al. BACON: a tool for reverse inference in brain activation and alteration. Hum Brain Mapp. 2021;42(11):3343–3351. doi:10.1002/hbm.25452
  • Costa T, Liloia D, Cauda F, et al. A minimum Bayes Factor based threshold for activation likelihood estimation. Neuroinform. 2023;21(2):365–374. doi:10.1007/s12021-023-09626-6
  • Eickhoff SB, Nichols TE, Laird AR, et al. Behavior, Sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage. 2016;137:70–85. doi:10.1016/j.neuroimage.2016.04.072
  • Eickhoff SB, Laird AR, Fox PM, Lancaster JL, Fox PT. Implementation errors in the GingerALE Software: description and recommendations. Hum Brain Mapp. 2017;38(1):7–11. doi:10.1002/hbm.23342
  • Langner R, Rottschy C, Laird AR, Fox PT, Eickhoff SB. Meta-analytic connectivity modeling revisited: controlling for activation base rates. NeuroImage. 2014;99:559–570. doi:10.1016/j.neuroimage.2014.06.007
  • Fox PT, Lancaster JL. Opinion: mapping context and content: the BrainMap model. Nat Rev Neurosci. 2002;3(4):319–321. doi:10.1038/nrn789
  • Lindquist MA. The Statistical Analysis of fMRI Data. Stat Sci. 2008;23(4):439–464. doi:10.1214/09-STS282
  • Poldrack RA, Mumford JA, Nichols TE. Handbook of Functional MRI Data Analysis. Cambridge University Press; 2011.
  • Logothetis NK, Wandell BA. Interpreting the BOLD Signal. Ann Rev Physiol. 2004;66(66):735–769. doi:10.1146/annurev.physiol.66.082602.092845
  • Talairach PJ Co-planar stereotaxic atlas of the human brain; 1988. Available from: https://cir.nii.ac.jp/crid/1370565169355516436. Accessed April 17, 2024.
  • Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994;18(2):192–205.
  • Tahmasian M, Sepehry AA, Samea F, et al. Practical recommendations to conduct a neuroimaging meta-analysis for neuropsychiatric disorders. Hum Brain Mapp. 2019;40(17):5142–5154. doi:10.1002/hbm.24746
  • Fox PT, Laird AR, Fox SP, et al. BrainMap taxonomy of experimental design: description and evaluation. Hum Brain Mapp. 2005;25(1):185–198. doi:10.1002/hbm.20141
  • Laird AR, Fox PM, Price CJ, et al. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp. 2005;25(1):155–164. doi:10.1002/hbm.20136
  • Vanasse TJ, Fox PM, Barron DS, et al. BrainMap VBM: an environment for structural meta-analysis. Hum Brain Mapp. 2018;39(8):3308–3325. doi:10.1002/hbm.24078
  • Fusar-Poli P, Placentino A, Carletti F, et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci. 2009;34(6):418–432.
  • Vytal K, Hamann S. Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J Cogn Neurosci. 2010;22(12):2864–2885. doi:10.1162/jocn.2009.21366
  • Brooks SJ, Savov V, Allzén E, Benedict C, Fredriksson R, Schiöth HB. Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: a systematic meta-analysis of fMRI studies. Neuroimage. 2012;59(3):2962–2973. doi:10.1016/j.neuroimage.2011.09.077
  • Gan X, Zhou X, Li J, et al. Common and distinct neurofunctional representations of core and social disgust in the brain: coordinate-based and network meta-analyses. Neurosci Biobehav Rev. 2022;135:104553. doi:10.1016/j.neubiorev.2022.104553
  • Oaten M, Stevenson RJ, Case TI. Disgust as a disease-avoidance mechanism. Psychol Bull. 2009;135(2):303–321. doi:10.1037/a0014823
  • Curtis V, de Barra M, Aunger R. Disgust as an adaptive system for disease avoidance behaviour. Philos Trans R Soc Lond B Biol Sci. 2011;366(1563):389–401. doi:10.1098/rstb.2010.0117
  • Vicario CM, Rafal RD, Martino D, Avenanti A. Core, social and moral disgust are bounded: a review on behavioral and neural bases of repugnance in clinical disorders. Neurosci Biobehav Rev. 2017;80:185–200. doi:10.1016/j.neubiorev.2017.05.008
  • Phillips ML, Young AW, Senior C, et al. A specific neural substrate for perceiving facial expressions of disgust. Nature. 1997;389(6650):495–498. doi:10.1038/39051
  • Bramley R, Howe S, Marmanis H. Notes on the data quality of bibliographic records from the MEDLINE database. Database. 2023;2023:baad070. doi:10.1093/database/baad070
  • McKeown S, Mir ZM. Considerations for conducting systematic reviews: evaluating the performance of different methods for de-duplicating references. Syst Rev. 2021;10(1):38. doi:10.1186/s13643-021-01583-y
  • Derrfuss J, Mar RA. Lost in localization: the need for a universal coordinate database. Neuroimage. 2009;48(1):1–7. doi:10.1016/j.neuroimage.2009.01.053
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med. 2021;18(3):e1003583. doi:10.1371/journal.pmed.1003583
  • Liloia D, Manuello J, Costa T, Keller R, Nani A, Cauda F. Atypical local brain connectivity in pediatric autism spectrum disorder? A coordinate-based meta-analysis of regional homogeneity studies. Eur Arch Psychiatry Clin Neurosci. 2024;274(1):3–18. doi:10.1007/s00406-022-01541-2
  • Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P. Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp. 2012;33(1):1–13. doi:10.1002/hbm.21186
  • Lancaster JL, Cykowski MD, McKay DR, et al. Anatomical global spatial normalization. Neuroinformatics. 2010;8(3):171–182. doi:10.1007/s12021-010-9074-x
  • Laird AR, Robinson JL, McMillan KM, et al. Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: validation of the Lancaster transform. Neuroimage. 2010;51(2):677–683. doi:10.1016/j.neuroimage.2010.02.048
  • Manuello J, Liloia D, Crocetta A, Cauda F, Costa T. CBMAT: a MATLAB toolbox for data preparation and post hoc analyses in neuroimaging meta-analyses. Behav Res. 2023. doi:10.3758/s13428-023-02185-3
  • Lancaster JL, Woldorff MG, Parsons LM, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10(3):120–131. doi:10.1002/1097-0193(200007)10:3<120::aid-hbm30>3.0.co;2-8
  • Reid AT, Bzdok D, Genon S, et al. ANIMA: a data-sharing initiative for neuroimaging meta-analyses. Neuroimage. 2016;124(Pt B):1245–1253. doi:10.1016/j.neuroimage.2015.07.060
  • Schilbach L, Müller VI, Hoffstaedter F, et al. Meta-analytically informed network analysis of resting state fMRI reveals hyperconnectivity in an introspective socio-affective network in depression. PLoS One. 2014;9(4):e94973. doi:10.1371/journal.pone.0094973
  • Liloia D, Mancuso L, Uddin LQ, et al. Gray matter abnormalities follow non-random patterns of co-alteration in autism: meta-connectomic evidence. NeuroImage. 2021;30:102583. doi:10.1016/j.nicl.2021.102583
  • Mancuso L, Costa T, Nani A, et al. The homotopic connectivity of the functional brain: a meta-analytic approach. Sci Rep. 2019;9(1):3346. doi:10.1038/s41598-019-40188-3