183
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Exploring the Role of Machine Learning in Diagnosing and Treating Speech Disorders: A Systematic Literature Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2205-2232 | Received 21 Jan 2024, Accepted 07 May 2024, Published online: 01 Jun 2024

References

  • Pagel M. Q&A: what is human language, when did it evolve and why should we care? BMC Biol. 2017;15:1–6. doi:10.1186/s12915-017-0405-3
  • McGregor KK, Langenfeld N, Van Horne S, Oleson J, Anson M, Jacobson W. The university experiences of students with learning disabilities. Learn Disabil Res Pract. 2016;31:90–102. doi:10.1111/ldrp.12102
  • Norbury CF, Paul R. Disorders of speech, language, and communication. Rutter’s Child Adoles Psych. 2015;2015:683–701.
  • McCormack J, McLeod S, McAllister L, Harrison LJ. A systematic review of the association between childhood speech impairment and participation across the lifespan. Internat J Speech. 2009;11:155–170. doi:10.1080/17549500802676859
  • Disability. World Health Oragnization; 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/disability-and-health. Accessed May 17, 2024.
  • Hendriks A. UN convention on the rights of persons with disabilities. Eur J Health Law. 2007;14:273–298. doi:10.1163/092902707X240620
  • Hawley MS, Cunningham SP, Green PD, et al. A voice-input voice-output communication aid for people with severe speech impairment. IEEE Trans Neural Syst Rehabil Eng. 2012;21:23–31. doi:10.1109/TNSRE.2012.2209678
  • Hair A, Monroe P, Ahmed B, Ballard KJ, Gutierrez-Osuna R. Apraxia world: a speech therapy game for children with speech sound disorders. In Proceedings of the Proceedings of the 17th ACM Conference on Interaction Design and Children; 2018: 119–131.
  • Attwell GA, Bennin KE, Tekinerdogan B. Reference architecture design for computer-based speech therapy systems. Comput. Speech Lang. 2023;78:101465. doi:10.1016/j.csl.2022.101465
  • Wang P, Van Hamme H. Benefits of pre-trained mono-and cross-lingual speech representations for spoken language understanding of Dutch dysarthric speech. EURASIP J Aud Spe Music Process. 2023;2023:1–25. doi:10.1186/s13636-023-00280-z
  • Gu Y, Bahrani M, Billot A, et al. A machine learning approach for predicting post-stroke aphasia recovery: a pilot study. In Proceedings of the Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments; 2020:1–9. doi:10.1145/3389189.3389204.
  • Mulfari D, Meoni G, Marini M, Fanucci L. Machine learning assistive application for users with speech disorders. Appl. Soft Comput. 2021;103:107147. doi:10.1016/j.asoc.2021.107147
  • Roldan-Vasco S, Orozco-Duque A, Suarez-Escudero JC, Orozco-Arroyave JR. Machine learning based analysis of speech dimensions in functional oropharyngeal dysphagia. Comput Methods Programs Biomed. 2021;208:106248. doi:10.1016/j.cmpb.2021.106248
  • Sekhar SM, Kashyap G, Bhansali A, et al. Dysarthric-speech detection using transfer learning with convolutional neural networks. ICT Express. 2022;8:61–64. doi:10.1016/j.icte.2021.07.004
  • Abderrazek S, Fredouille C, Ghio A, Lalain M, Meunier C, Woisard V. Interpreting deep representations of phonetic features via neuro-based concept detector: application to speech disorders due to head and neck cancer. IEEE/ACM Trans Audio Speech Lang Process. 2023;31:200–214. doi:10.1109/TASLP.2022.3221039
  • Vashisht V, Kumar Pandey A, Prakash Yadav S. ”Speech recognition using machine learning IEIE Transactions on Smart Processing & Computing 10.3; 2021:233–239.
  • Zhang Y, Pezeshki M, Brakel P, Zhang S, Laurent Yoshua Bengio C, Courville A. ”Towards end-to-end speech recognition with deep convolutional neural networks. arXiv Preprint, arXiv. 2017;2017:1.
  • Ayanouz S, Anouar abdelhakim B, Benhmed M. A smart chatbot architecture based NLP and machine learning for health care assistance. In: Proceedings of the 3rd international conference on networking, information systems & security; 2020:1–6.
  • Qin L, Minheng N, Zhang Y, Che W. ”Cosda-mL: multi-lingual code-switching data augmentation for zero-shot cross-lingual nlp. arXiv Preprint, arXiv. 2020;2020:1.
  • Zhang A. Human computer interaction system for teacher-student interaction model using machine learning. Internat J Hum Comp Interact. 2022;2022:1–12.
  • Esteva A, Chou K, Yeung S, et al. Deep learning-enabled medical computer vision. Npj Digital Med. 2021;4:5. doi:10.1038/s41746-020-00376-2
  • Tyagi AK, Mannoj Nair M. Deep learning for clinical and health informatics. Computational Analysis and Deep Learning for Medical Care: Principles, Methods, and Applications; 2021:107–129.
  • Yanes N. A machine learning-based recommender system for improving students learning experiences. IEEE Access 8; 2020:201218–201235.
  • Zhang B. Integrating an attention mechanism and convolution collaborative filtering for document context-aware rating prediction. IEEE Access 7; 2018: 3826–3835.
  • Jefferson M. Usability of automatic speech recognition systems for individuals with speech disorders: past, present, future, and a proposed model; 2019.
  • Janbakhshi P, Kodrasi I, Bourlard H. Subspace-based learning for automatic dysarthric speech detection. IEEE Signal Process Lett. 2020;28:96–100. doi:10.1109/LSP.2020.3044503
  • Tripathi A, Bhosale S, Kopparapu SK. Automatic speaker independent dysarthric speech intelligibility assessment system. Comput. Speech Lang. 2021;69:101213. doi:10.1016/j.csl.2021.101213
  • McMahan B, Moore E, Ramage D, Hampson S, Arcas BA Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial intelligence and statistics. PMLR, 2017, pp. 1273–1282.
  • Sitaula C, He J, Priyadarshi A, et al. Neonatal bowel sound detection using convolutional neural network and Laplace hidden semi-Markov model. IEEE/ACM Trans Audio Speech Lang Process. 2022;30:1853–1864. doi:10.1109/TASLP.2022.3178225
  • Subramanian AS, Weng C, Watanabe S, Yu M, Yu D. Deep learning based multi-source localization with source splitting and its effectiveness in multi-talker speech recognition. Comput. Speech Lang. 2022;75:101360. doi:10.1016/j.csl.2022.101360
  • Landrigan J-F, Zhang F, Mirman D. A data-driven approach to post-stroke aphasia classification and lesion-based prediction. Brain. 2021;144:1372–1383. doi:10.1093/brain/awab010
  • Jothi K, Mamatha V A systematic review of machine learning based automatic speech assessment system to evaluate speech impairment. In Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS). IEEE, 2020, pp. 175–185.
  • Bharti K, Das PK A Survey on ASR Systems for Dysarthric Speech. In Proceedings of the 2022 4th International Conference on Artificial Intelligence and Speech Technology (AIST). IEEE, 2022, pp. 1–6.
  • Usha GP, Alex JSR. Speech assessment tool methods for speech impaired children: a systematic literature review on the state-of-The-art in Speech impairment analysis. Multimedia Tools Appl. 2023;1–38. doi:10.1007/s11042-023-14913-0
  • Attwell GA, Bennin KE, Tekinerdogan B. A systematic review of online speech therapy systems for intervention in childhood speech communication disorders. Sensors. 2022;22:9713. doi:10.3390/s22249713
  • de Freitas MP, Piai VA, Farias RH, Fernandes AM, de Moraes Rossetto AG, Leithardt VRQ. Artificial intelligence of things applied to assistive technology: a systematic literature review. Sensors. 2022;22:8531. doi:10.3390/s22218531
  • Smith E, Hokstad S, Næss KAB. Children with Down syndrome can benefit from language interventions; Results from a systematic review and meta-analysis. J Communic Dis. 2020;85:105992. doi:10.1016/j.jcomdis.2020.105992
  • Cera ML, Ortiz KZ, Bertolucci PHF, Tsujimoto T, Minett T. Speech and phonological impairment across Alzheimer’s disease severity. J Communic Dis. 2023;105:106364. doi:10.1016/j.jcomdis.2023.106364
  • Resende EDPF, Nolan AL, Petersen C, et al. Language and spatial dysfunction in Alzheimer disease with white matter thorn-shaped astrocytes. Neurology. 2020;94:e1353–e1364. doi:10.1212/WNL.0000000000008937
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int j Surg. 2021;88:105906. doi:10.1016/j.ijsu.2021.105906
  • Defining Speech and Language Disorders; 2023. Available from: https://speechandlanguagedisabilities.weebly.com/. Accessed December 11, 2023.
  • Dysarthria. American Speech-Language-Hearing Association; 2024. Available from: https://www.asha.org/public/speech/disorders/dysarthria/. Accessed May 17, 2024.
  • What is Aphasia? National Aphasia Association; 2024. Available from: https://www.aphasia.org/aphasia-definitions/. Accessed May 17, 2024.
  • Voice impairment has many causes. Dysphonia International. Available from: https://dysphonia.org/voice-conditions/overview-of-vocal-disorders/; 2023. Accessed May 17, 2023.
  • Sachin S, Sachin S, Shukla G, et al. Clinical speech impairment in Parkinson Parkinson’s disease, progressive supranuclear palsy, and multiple system atrophy. Neurol India. 2008;56:122–126. doi:10.4103/0028-3886.41987
  • What-is-parkinsons. Parkinson’s Foundation; 2024. Available from: https://www.parkinson.org/understanding-parkinsons/what-is-parkinsons. Accessed May 10, 2024.
  • Apaxia. National Organization for Rare Disorders; 2003. Available from: https://rarediseases.org/rare-diseases/apraxia. Accessed May 17, 2024.
  • What is Stammering. Stamma; 2024. Available from: https://stamma.org/about-stammering/stammering-facts/what-is-stammering. Accessed May 17, 2024.
  • Aphasia. National Institute on Deafness and Other Communication Disorders; 2017. Available from: https://www.nidcd.nih.gov/health/aphasia. Accessed May 17, 2024.
  • Quick Statistics About Voice, Speech, Language. National Institute on Deafness and Other Communication Disorders; 2024. Available from: https://www.nidcd.nih.gov/health/statistics/quick-statistics-voice-speech-language. Accessed May 17, 2024.
  • Speech And Language Disorders Statistics. Gitnux; 2023. Available from: https://blog.gitnux.com/speech-and-language-disorders-statistics. Accessed May 17, 2024.
  • Ravi SK, Sumanth P, Saraswathi T, Chinoor MAB, Ashwini N, Ahemed E. Prevalence of communication disorders among school children in Ballari, South India: a cross-sectional study. Clin Epidemiol Global Health. 2021;12:100851. doi:10.1016/j.cegh.2021.100851
  • Bosch R, Pagerols M, Rivas C, et al. Neurodevelopmental disorders among Spanish school-age children: prevalence and sociodemographic correlates. Psychological Med. 2022;52:3062–3072. doi:10.1017/S0033291720005115
  • Sung TW, Tsai PW, Gaber T, Lee CY. Artificial Intelligence of Things (AIoT) technologies and applications. Wireless Communications and Mobile Computing. 2021;2021:1–2. doi:10.1155/2021/9781271
  • Liu Y, Penttilä N, Ihalainen T, Lintula J, Convey R, Räsänen O. Language-independent approach for automatic computation of vowel articulation features in dysarthric speech assessment. IEEE/ACM Trans Audio Speech Lang Process. 2021;29:2228–2243. doi:10.1109/TASLP.2021.3090973
  • Dhouib A, Othman A, El Ghoul O, et al. ”Arabic automatic speech recognition: a systematic literature review. Appl Sci. 2022;12:8898. doi:10.3390/app12178898
  • Mehrish A, Majumder N, Bharadwaj R, Mihalcea R, Poria S. A review of deep learning techniques for speech processing. Information Fusion. 2023;2023:101869.
  • Novotný M, Rusz J, Mejla Cˇ, Ru° R, Žicˇka E. Automatic evaluation of articulatory disorders in parkinson’s disease. ACM Trans Audio Speech and Lang Proc. 2014;22:1366–1378. doi:10.1109/TASLP.2014.2329734
  • Davis S, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust. 1980;28:357–366. doi:10.1109/TASSP.1980.1163420
  • Abeysinghe A, Fard M, Jazar R, Zambetta F, Davy J. Mel frequency cepstral coefficient temporal feature integration for classifying squeak and rattle noise. J Acoust Soc Am. 2021;150:193–201. doi:10.1121/10.0005201
  • Corcoran P, Hensman A, Kirkpatrick B Glottal Flow Analysis in Parkinsonian Speech. In Proceedings of the BIOSIGNALS, 2019, pp. 116–123.
  • Cmejla R, Rusz J, Bergl P, Vokral J. Bayesian changepoint detection for the automatic assessment of fluency and articulatory disorders. Speech Commun. 2013;55:178–189. doi:10.1016/j.specom.2012.08.003
  • Kodrasi I, Bourlard H. Spectro-temporal sparsity characterization for dysarthric speech detection. IEEE/ACM Trans Audio Speech Lang Process. 2020;28:1210–1222. doi:10.1109/TASLP.2020.2985066
  • Gowdy JN, Tufekci Z. Mel-scaled discrete wavelet coefficients for speech recognition. 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100). IEEE; 2000.
  • Sanz H, Valim C, Vegas E, Oller JM, Reverter F. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinf. 2018;19:1–18. doi:10.1186/s12859-018-2451-4
  • Cai Y, Huang T, Hu L, Shi X, Xie L, Li Y. Prediction of lysine ubiquitination with mRMR feature selection and analysis. Amino Acids. 2012;42:1387–1395. doi:10.1007/s00726-011-0835-0
  • Cilia ND, De Stefano C, Fontanella F, Di Freca AS. A ranking-based feature selection approach for handwritten character recognition. Pattern Recognit Lett. 2019;121:77–86. doi:10.1016/j.patrec.2018.04.007
  • Sun Y, Todorovic S, Goodison S. Local-learning-based feature selection for high-dimensional data analysis. IEEE Transact Patter Analy Mach Intellig. 2009;32:1610–1626.
  • Tulshiram R. Regression shrinkage and selection via the lasso. J Royal Statist Soc Series B. 1996;58:267–288. doi:10.1111/j.2517-6161.1996.tb02080.x
  • Cantürk I, Karabiber F. A machine learning system for the diagnosis of Parkinson’s disease from speech signals and its application to multiple speech signal types. Arab J Sci Eng. 2016;41:5049–5059. doi:10.1007/s13369-016-2206-3
  • Liu S, Geng M, Hu S, et al. Recent progress in the CUHK dysarthric speech recognition system. IEEE/ACM Trans Audio Speech Lang Process. 2021;29:2267–2281. doi:10.1109/TASLP.2021.3091805
  • Azadi H, Akbarzadeh-T MR, Kobravi HR, Shoeibi A. Robust voice feature selection using interval type-2 Fuzzy AHP for automated diagnosis of parkinson’s disease. IEEE/ACM Trans Audio Speech Lang Process. 2021;29:2792–2802. doi:10.1109/TASLP.2021.3097215
  • Hegde S, Shetty S, Rai S, Dodderi T. A survey on machine learning approaches for automatic detection of voice disorders. J Voice. 2019;33:947–e11. doi:10.1016/j.jvoice.2018.07.014
  • Kaur J, Singh A, Kadyan V. Automatic speech recognition system for tonal languages: state-of-The-art survey. Arch. Comput. Methods Eng. 2021;28:1039–1068. doi:10.1007/s11831-020-09414-4
  • ACM; 2024. Available from: https://dl.acm.org/. Accessed May 17, 2024.
  • ScienceDirect; 2024. Available from: https://www.sciencedirect.com/. Accessed May 17, 2024.
  • Springer; 2024. Available from: https://link.springer.com. Accessed May 17, 2024.
  • Rudzicz F, Namasivayam AK, Wolff T. The TORGO database of acoustic and articulatory speech from speakers with Dysarthria. Langu Resourc Evalu. 2012;46:523–541. doi:10.1007/s10579-011-9145-0
  • Kim H, Hasegawa-Johnson M, Perlman A, et al. Dysarthric speech database for universal access research. In:Proceedings of the Ninth Annual Conference of the International Speech Communication Association; 2008.
  • Laaridh I, Fredouille C, Meunier C. Automatic detection of phone-based anomalies in dysarthric speech. ACM Transact Accessib Comput. 2015;6:1–24. doi:10.1145/2739050
  • Franciscatto MH, Del Fabro MD, Lima JCD, et al. Towards a speech therapy support system based on phonological processes early detection. Comput Speech Lang. 2021;65:101130. doi:10.1016/j.csl.2020.101130
  • Jong NS, Phukpattaranont P. A speech recognition system based on electromyography for the rehabilitation of dysarthric patients: a Thai syllable study. Biocybernetics Biomed Eng. 2019;39:234–245. doi:10.1016/j.bbe.2018.11.010
  • Available from: https://aphasia.talkbank.org/. Accessed May 17, 2024.
  • Yue Z, Loweimi E, Christensen H, Barker J, Cvetkovic Z. Acoustic modelling from raw source and filter components for dysarthric speech recognition. IEEE/ACM Trans Audio Speech Lang Process. 2022;30:2968–2980. doi:10.1109/TASLP.2022.3205766
  • Pellegrini T, Fontan L, Mauclair J, et al. Automatic assessment of speech capability loss in disordered speech. ACM Transact Accessib Comput. 2015;6:1–14. doi:10.1145/2739051
  • Nagarajan T, Vijayalakshmi P. Dysarthric speech corpus in Tamil for rehabilitation research. In: Proceedings of the 2016 IEEE Region 10 Conference (TENCON). IEEE; 2016:2610–2613.
  • Shahamiri SR, Salim SSB. A multi-views multi-learners approach towards dysarthric speech recognition using multi-nets artificial neural networks. IEEE Trans Neural Syst Rehabil Eng. 2014;22:1053–1063. doi:10.1109/TNSRE.2014.2309336
  • Celin TM, Nagarajan T, Vijayalakshmi P. Data augmentation using virtual microphone array synthesis and multi-resolution feature extraction for isolated word dysarthric speech recognition. IEEE Journal of Selected Topics in Signal Processing. 2020;14:346–354. doi:10.1109/JSTSP.2020.2972161
  • Mohammed SY, Sid-ahmed S, Brahim-Fares Z, Asma B. Improving dysarthric speech recognition using empirical mode decomposition and convolutional neural network. EURASIP J Audio. 2020;1. doi:10.1186/s13636-019-0169-5
  • Narendra N, Schuller B, Alku P. The detection of Parkinson’s disease from speech using voice source information. IEEE/ACM Trans Audio Speech Lang Process. 2021;29:1925–1936. doi:10.1109/TASLP.2021.3078364
  • The TORGO Database: Acoustic and articulatory speech from speakers with dysarthria. Toronto; 2012. Available from: https://www.cs.toronto.edu/~complingweb/data/TORGO/torgo.html. Accessed May 17, 2024.
  • Christensen H, Rudzicz F, Portet F, Alexandersson J. Perspectives on speech and language interaction for daily assistive technology: introduction to part 1 of the special issue; 2015.
  • Shah M, Tu M, Berisha V, Chakrabarti C, Spanias A. Articulation constrained learning with application to speech emotion recognition. EURASIP J Audio. 2019;2019:1–17. doi:10.1186/s13636-019-0157-9
  • Takashima Y, Takashima R, Takiguchi T, Ariki Y. Knowledge transferability between the speech data of persons with Dysarthria speaking different languages for dysarthric speech recognition. IEEE Access. 2019;7:164320–164326. doi:10.1109/ACCESS.2019.2951856
  • Woisard V, Astésano C, Balaguer M, et al. C2SI corpus: a database of speech disorder productions to assess intelligibility and quality of life in head and neck cancers. Langu Resourc Evalu. 2021;55:173–190. doi:10.1007/s10579-020-09496-3
  • UA-Speech; 2024. Available from: http://www.isle.illinois.edu/sst/data/UASpeech/. Accessed May 17, 2024.
  • Fritsch J, Magimai-Doss M. Utterance verification-based dysarthric speech intelligibility assessment using phonetic posterior features. IEEE Signal Process Lett. 2021;28:224–228. doi:10.1109/LSP.2021.3050362
  • Shahamiri SR. Speech vision: an end-to-end deep learning-based dysarthric automatic speech recognition system. IEEE Trans Neural Syst Rehabil Eng. 2021;29:852–861. doi:10.1109/TNSRE.2021.3076778
  • Lamel LF, Gauvain JL, Eskénazi M, et al. Bref, a large vocabulary spoken corpus for French. Training. 1991;22:50.
  • Little M. Parkinsons. UCI Mach Learn Reposit. 2008. doi:10.24432/C591C07774
  • Menendez-Pidal X, Polikoff JB, Peters SM, Leonzio JE, Bunnell HT. The Nemours database of dysarthric speech. In Proceedings of the Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP’96. IEEE; 1996:1962–1965.
  • Geng M, Xie X, Ye Z, et al. Speaker adaptation using spectro-temporal deep features for dysarthric and elderly speech recognition. IEEE/ACM Trans Audio Speech Lang Process. 2022;30:2597–2611. doi:10.1109/TASLP.2022.3195113
  • Fougeron C, Crevier-Buchman L, Fredouille C, et al. Developing an acoustic-phonetic characterization of dysarthric speech in French. In Proceedings of the 7th International Conference on Language Resources, Technologies and Evaluation (LREC). Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Bente Maegaard, 2010, Vol. 1, pp. 2831–2838.
  • Mauclair J, Koenig L, Robert M, Gatignol P Burst-based features for the classification of pathological voices. In Proceedings of the INTERSPEECH, 2013, pp. 2167–2171.
  • Parnandi A, Karappa V, Lan T, et al. Development of a remote therapy tool for childhood apraxia of speech. ACM Transact Accessib Comput. 2015;7:1–23. doi:10.1145/2776895
  • BREF-120 - A large corpus of French read speech. Elra; 2005. Available from: https://catalogue.elra.info/en-us/repository/browse/ELRA-S0067. Accessed May 17, 2024.
  • Vacher M, Caffiau S, Portet F, et al. Evaluation of a context-aware voice interface for ambient assisted living: qualitative user study vs. quantitative system evaluation. ACM Transact Accessib Comput. 2015;7:1–36. doi:10.1145/2738047
  • Pradhan A, Mehta K, Findlater L. ”Accessibility Came by Accident” Use of Voice-Controlled Intelligent Personal Assistants by People with Disabilities. In Proceedings of the Proceedings of the 2018 CHI Conference on human factors in computing systems; 2018:1–13. doi:10.1145/3173574.3174033.
  • Kominek J, Black AW. The CMU Arctic speech databases. In: Proceedings of the Fifth ISCA workshop on speech synthesis; 2004.
  • Dudy S, Bedrick S, Asgari M, Kain A. Automatic analysis of pronunciations for children with speech sound disorders. Comput Speech Lang. 2018;50:62–84. doi:10.1016/j.csl.2017
  • Gupta S, Patil AT, Purohit M, et al. Residual neural network precisely quantifies dysarthria severity-level based on short-duration speech segments. Neural Networks. 2021;139:105–117. doi:10.1016/j.neunet.2021.02.008
  • Chandrakala S, Rajeswari N. Representation learning based speech assistive system for persons with Dysarthria. IEEE Trans Neural Syst Rehabil Eng. 2016;25:1510–1517. doi:10.1109/TNSRE.2016.2638830
  • Kurematsu A, Takeda K, Sagisaka Y, Katagiri S, Kuwabara H, Shikano K. ATR Japanese speech database as a tool of speech recognition and synthesis. Speech Commun. 1990;9:357–363. doi:10.1016/0167-6393(90)90011-W
  • Sedgwick P. Pearson’s correlation coefficient. BMJ. 2012;2012:345.
  • Narendra NP, Alku P. Automatic intelligibility assessment of dysarthric speech using glottal parameters. Speech Commun. 2020;123:1–9. doi:10.1016/j.specom.2020.06.003
  • The SSNCE Database of Tamil Dysarthric Speech. P. Vijayalakshmi, T. A. Mariya Celin, T. Nagarajan; 2021. Available from: https://catalog.ldc.upenn.edu/LDC2021S04. Accessed May 17, 2024.
  • Asaei A, Cernak M, Bourlard H. Perceptual information loss due to impaired speech production. IEEE/ACM Transacti Aud Spe Langu Process. 2017;25:2433–2443. doi:10.1109/TASLP.2017.2738445
  • MoSpeeDi. Universite Fe Geneve; 2021. Available from: https://www.unige.ch/fapse/mospeedi/sous-projets. Accessed May 17, 2024.
  • Orozco--Arroyave JR, Arias-Londoño JD, Vargas-Bonilla JF, Gonzalez-Rátiva MC, Nöth E New Spanish speech corpus database for the analysis of people suffering from Parkinson’s disease. In: Proceedings of the LREC; 2014:342–347.
  • Conn P. Distribution of Language Measures among Individuals with and without Non-Fluent Aphasia. In: Proceedings of the Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments, 2017: 252–253. doi:10.1145/3056540.3076214.
  • TIMIT Acoustic-Phonetic Continuous Speech Corpus. John S. Garofolo, Lori F. Lamel, William M. Fisher, et al; 1993. Available from: https://catalog.ldc.upenn.edu/LDC93S1. Accessed May 17, 2024.
  • CMU_ARCTIC speech synthesis databases. Language Technologies Institute at Carnegie Mellon University; 2003. Available from: http://www.festvox.org/cmu_arctic/. Accessed May 17, 2024.
  • Hair A, Ballard KJ, Markoulli C, et al. A longitudinal evaluation of tablet-based child speech therapy with Apraxia World. ACM Transact Accessib Comput. 2021;14:1–26. doi:10.1145/3433607
  • Kim MJ, Kim Y, Kim H. Automatic intelligibility assessment of dysarthric speech using phonologically-structured sparse linear model. IEEE/ACM Trans Audio Speech Lang Process. 2015;23:694–704. doi:10.1109/TASLP.2015.2403619
  • Middag C, Martens JP, Van Nuffelen G, De Bodt M. Automated intelligibility assessment of pathological speech using phonological features. EURASIP J Adv Signal Process. 2009;2009:1–9. doi:10.1155/2009/629030
  • Oxford Parkinson's Disease Detection Dataset. Max A. Little, P. McSharry, S. Roberts, at al; 2007. Available from: https://archive.ics.uci.edu/dataset/174/parkinsons. Accessed May 17, 2024.
  • Dhanalakshmi M, Mariya Celin T, Nagarajan T, Vijayalakshmi P. Speech-input speech-output communication for dysarthric speakers using HMM-based speech recognition and adaptive synthesis system. Circuit Syst Signal Proc. 2018;37:674–703. doi:10.1007/s00034-017-0567-9
  • Bhat C, Strik H. Automatic assessment of sentence-level dysarthria intelligibility using BLSTM. IEEE Journal of Selected Topics in Signal Processing. 2020;14:322–330. doi:10.1109/JSTSP.2020.2967652
  • Garofolo JS. TIMIT Acoustic Phonetic Continuous Speech Corpus. Linguistic Data Consortium; 1993.
  • Marfoq O, Neglia G, Kameni L, Vidal R Federated Learning for Data Streams. In Proceedings of the Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research; 2023:8889–8924.
  • Kodrasi I. Temporal envelope and fine structure cues for dysarthric speech detection using CNNs. IEEE Signal Process Lett. 2021;28:1853–1857. doi:10.1109/LSP.2021.3108509
  • Lee S, Yildirim S, Kazemzadeh A, Narayanan S. An articulatory study of emotional speech production. In: Proceedings of the Ninth European Conference on Speech Communication and Technology; 2005.
  • Liu Y, Reddy MK, Penttilä N, Ihalainen T, Alku P, Räsänen O. Automatic Assessment of Parkinson’s Disease Using Speech Representations of Phonation and Articulation. IEEE/ACM Trans Audio Speech Lang Process. 2023;31:242–255. doi:10.1109/TASLP.2022.3212829
  • Ballati F, Corno F, De Russis L. Assessing virtual assistant capabilities with Italian dysarthric speech. In: Proceedings of the Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility; 2018:93–101. doi:10.1145/3234695.3236354
  • Martínez D, Lleida E, Green P, Christensen H, Ortega A, Miguel A. Intelligibility assessment and speech recognizer word accuracy rate prediction for dysarthric speakers in a factor analysis subspace. ACM Transact Accessib Comput. 2015;6:1–21. doi:10.1145/2746405
  • Meunier C, Fougeron C, Fredouille C, et al. The TYPALOC Corpus: a collection of various dysarthric speech recordings in read and spontaneous styles. In: Proceedings of the Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia; 2016:4658–4665.
  • Busso C, Bulut M, Lee CC, et al. IEMOCAP: interactive emotional dyadic motion capture database. Language Res Evalu. 2008;42:335–359. doi:10.1007/s10579-008-9076-6
  • Le D, Licata K, Persad C, Provost EM. Automatic assessment of speech intelligibility for individuals with aphasia. IEEE/ACM Trans Audio Speech Lang Process. 2016;24:2187–2199. doi:10.1109/TASLP.2016.2598428
  • Sajal MSR, Ehsan MT, Vaidyanathan R, Wang S, Aziz T, Mamun KAA. Telemonitoring Parkinson’s disease using machine learning by combining tremor and voice analysis. Brain Informat. 2020;7:1–11. doi:10.1186/s40708-020-00113-1
  • Ramou N, Guerti M. Automatic detection of articulations disorders from children’s speech preliminary study. J Communicat Technol Elect. 2014;59(11):1274–1279. doi:10.1134/S1064226914110187
  • MoSpeeDi. Universite Fe Geneve; 2021. Available from: https://www.unige.ch/fapse/mospeedi/sous-projets. Accessed May 17, 2024.
  • Vikram C, Adiga N, Prasanna SM. Detection of nasalized voiced stops in cleft palate speech using epoch-synchronous features. IEEE/ACM Trans Audio Speech Lang Process. 2019;27:1189–1200. doi:10.1109/TASLP.2019.2913089