477
Views
12
CrossRef citations to date
0
Altmetric
REVIEW

Towards Personalized Medicine in Psoriasis: Current Progress

ORCID Icon, ORCID Icon, ORCID Icon, , &
Pages 231-250 | Received 30 Jun 2022, Accepted 13 Aug 2022, Published online: 01 Sep 2022

References

  • Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 2017;31(2):205–212. doi:10.1111/jdv.13854
  • Reid C, Cordingley L, Warren RB, Griffiths CEM. Progress to date in advancing stratified medicine in psoriasis. Am J Clin Dermatol. 2020;21(5):619–626. doi:10.1007/s40257-020-00533-z
  • Griffiths CEM, Jo S-J, Naldi L, et al. A multidimensional assessment of the burden of psoriasis: results from a multinational dermatologist and patient survey. Br J Dermatol. 2018;179(1):173–181. doi:10.1111/bjd.16332
  • Megna M, Potestio L, Fabbrocini G, Camela E. Treating psoriasis in the elderly: biologics and small molecules. Expert Opin Biol Ther. 2022;1–18. doi:10.1080/14712598.2022.2089020
  • Raimondo A, Balato A, Megna M, Balato N. Limitations of current monoclonal antibodies for plaque-type psoriasis and an outlook for the future. Expert Opin Biol Ther. 2018;18(6):605–607. doi:10.1080/14712598.2018.1479738
  • Litman T. Personalized medicine-concepts, technologies, and applications in inflammatory skin diseases. APMIS. 2019;127(5):386–424. doi:10.1111/apm.12934
  • Osmola-Mańkowska A, Teresiak-Mikołajczak E, Skrzypczak-Zielińska M, Adamski Z. Genetic polymorphism in psoriasis and its meaning for the treatment efficacy in the future. Postep dermatologii i Alergol. 2018;35(4):331–337. doi:10.5114/ada.2018.77661
  • van de Kerkhof PC. Psoriasis in the perspective of predictive, preventive participatory and personalized medicine. J Dermatolog Treat. 2018;29(2):107–108. doi:10.1080/09546634.2018.1437739
  • Ryan C, Renfro L, Collins P, Kirby B, Rogers S. Clinical and genetic predictors of response to narrowband ultraviolet B for the treatment of chronic plaque psoriasis. Br J Dermatol. 2010;163(5):1056–1063. doi:10.1111/j.1365-2133.2010.09985.x
  • Gallais Sérézal I, Classon C, Cheuk S, et al. Resident T cells in resolved psoriasis steer tissue responses that stratify clinical outcome. J Invest Dermatol. 2018;138(8):1754–1763. doi:10.1016/j.jid.2018.02.030
  • Prieto-Pérez R, Cabaleiro T, Daudén E, Ochoa D, Román M, Abad-Santos F. Pharmacogenetics of topical and systemic treatment of psoriasis. Pharmacogenomics. 2013;14(13):1623–1634. doi:10.2217/pgs.13.163
  • Yélamos O, Puig L. Systemic methotrexate for the treatment of psoriasis. Expert Rev Clin Immunol. 2015;11(5):553–563. doi:10.1586/1744666X.2015.1026894
  • Hannoodee M, Mittal M Methotrexate; 2022.
  • Puig L. Methotrexate: new therapeutic approaches. Actas Dermosifiliogr. 2014;105(6):583–589. doi:10.1016/j.ad.2012.11.017
  • Chládek J, Grim J, Martínková J, et al. Pharmacokinetics and pharmacodynamics of low-dose methotrexate in the treatment of psoriasis. Br J Clin Pharmacol. 2002;54(2):147–156. doi:10.1046/j.1365-2125.2002.01621.x
  • Hayashi H, Tazoe Y, Tsuboi S, et al. A single nucleotide polymorphism of reduced folate carrier 1 predicts methotrexate efficacy in Japanese patients with rheumatoid arthritis. Drug Metab Pharmacokinet. 2013;28(2):164–168. doi:10.2133/dmpk.dmpk-12-nt-038
  • Ando Y, Shimada H, Matsumoto N, et al. Role of methotrexate polyglutamation and reduced folate carrier 1 (RFC1) gene polymorphisms in clinical assessment indexes. Drug Metab Pharmacokinet. 2013;28(5):442–445. doi:10.2133/dmpk.dmpk-12-rg-128
  • Chandran V, Siannis F, Rahman P, Pellett FJ, Farewell VT, Gladman DD. Folate pathway enzyme gene polymorphisms and the efficacy and toxicity of methotrexate in psoriatic arthritis. J Rheumatol. 2010;37(7):1508–1512. doi:10.3899/jrheum.091311
  • Yélamos O, Català A, Vilarrasa E, Roé E, Puig L. Acute severe methotrexate toxicity in patients with psoriasis: a case series and discussion. Dermatology. 2014;229(4):306–309. doi:10.1159/000366501
  • Warren RB, Smith RL, Campalani E, et al. Outcomes of methotrexate therapy for psoriasis and relationship to genetic polymorphisms. Br J Dermatol. 2009;160(2):438–441. doi:10.1111/j.1365-2133.2008.08898.x
  • Campalani E, Arenas M, Marinaki AM, Lewis CM, Barker JNWN, Smith CH. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol. 2007;127(8):1860–1867. doi:10.1038/sj.jid.5700808
  • Warren RB, Smith RLL, Campalani E, et al. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis. J Invest Dermatol. 2008;128(8):1925–1929. doi:10.1038/jid.2008.16
  • Ovejero-Benito MC, Muñoz-Aceituno E, Reolid A, Saiz-Rodríguez M, Abad-Santos F, Daudén E. Pharmacogenetics and pharmacogenomics in moderate-to-severe psoriasis. Am J Clin Dermatol. 2018;19(2):209–222. doi:10.1007/s40257-017-0322-9
  • Indhumathi S, Rajappa M, Chandrashekar L, Ananthanarayanan PH, Thappa DM, Negi VS. Pharmacogenetic markers to predict the clinical response to methotrexate in south Indian Tamil patients with psoriasis. Eur J Clin Pharmacol. 2017;73(8):965–971. doi:10.1007/s00228-017-2255-x
  • Goldminz AM, Suárez-Fariñas M, Wang AC, Dumont N, Krueger JG, Gottlieb AB. CCL20 and IL22 messenger RNA expression after adalimumab vs methotrexate treatment of psoriasis: a randomized clinical trial. JAMA Dermatol. 2015;151(8):837–846. doi:10.1001/jamadermatol.2015.0452
  • Grželj J, Mlinarič-Raščan I, Marko PB, Marovt M, Gmeiner T, Šmid A. Polymorphisms in GNMT and DNMT3b are associated with methotrexate treatment outcome in plaque psoriasis. Biomed Pharmacother. 2021;138:111456. doi:10.1016/j.biopha.2021.111456
  • Grželj J, Marovt M, Marko PB, Mlinarič-Raščan I, Gmeiner T, Šmid A. Polymorphism in gene for ABCC2 transporter predicts methotrexate drug survival in patients with psoriasis. Medicina. 2021;57(10):1050. doi:10.3390/medicina57101050
  • Fan Z, Zhang Z, Huang Q, et al. The impact of ANxA6 gene polymorphism on the efficacy of methotrexate treatment in psoriasis patients. Dermatology. 2021;237(4):579–587. doi:10.1159/000514072
  • West J, Ogston S, Berg J, et al. HLA-Cw6-positive patients with psoriasis show improved response to methotrexate treatment. Clin Exp Dermatol. 2017;42(6):651–655. doi:10.1111/ced.13100
  • Chen W, Zhang X, Zhang W, Peng C, Zhu W, Chen X. Polymorphisms of SLCO1B1 rs4149056 and SLC22A1 rs2282143 are associated with responsiveness to Acitretin in psoriasis patients. Sci Rep. 2018;8(1):13182. doi:10.1038/s41598-018-31352-2
  • Young HS, Summers AM, Read IR, et al. Interaction between genetic control of vascular endothelial growth factor production and retinoid responsiveness in psoriasis. J Invest Dermatol. 2006;126(2):453–459. doi:10.1038/sj.jid.5700096
  • Chen W, Wu L, Zhu W, Chen X. The polymorphisms of growth factor genes (VEGFA & EGF) were associated with response to Acitretin in psoriasis. Per Med. 2018;15(3):181–188. doi:10.2217/pme-2017-0085
  • Campalani E, Allen MH, Fairhurst D, et al. Apolipoprotein E gene polymorphisms are associated with psoriasis but do not determine disease response to Acitretin. Br J Dermatol. 2006;154(2):345–352. doi:10.1111/j.1365-2133.2005.06950.x
  • Zhou X, Zhu W, Shen M, et al. Frizzled-related proteins 4 (SFRP4) rs1802073G allele predicts the elevated serum lipid levels during Acitretin treatment in psoriatic patients from Hunan, China. PeerJ. 2018;6:e4637. doi:10.7717/peerj.4637
  • O’Rielly DD, Rahman P. Pharmacogenetics of psoriasis. Pharmacogenomics. 2011;12(1):87–101. doi:10.2217/pgs.10.166
  • Naesens M, Kuypers DRJ, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4(2):481–508. doi:10.2215/CJN.04800908
  • Vasilopoulos Y, Sarri C, Zafiriou E, et al. A pharmacogenetic study of ABCB1 polymorphisms and cyclosporine treatment response in patients with psoriasis in the Greek population. Pharmacogenomics J. 2014;14(6):523–525. doi:10.1038/tpj.2014.23
  • Haider AS, Lowes MA, Suárez-Fariñas M, et al. Identification of cellular pathways of “type 1,” Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. J Immunol. 2008;180(3):1913–1920. doi:10.4049/jimmunol.180.3.1913
  • Caputo V, Strafella C, Cosio T, et al. Pharmacogenomics: an update on biologics and small-molecule drugs in the treatment of psoriasis. Genes. 2021;12(9):1398. doi:10.3390/genes12091398
  • Gambichler T, Susok L, Zankl J, Skrygan M. Val/Val glutathione-S-transferase P1 polymorphism predicts nonresponders in psoriasis patients treated with fumaric acid esters. Pharmacogenet Genomics. 2016;26(5):248–253. doi:10.1097/FPC.0000000000000218
  • Brownstone ND, Hong J, Mosca M, et al. Biologic treatments of psoriasis: an update for the clinician. Biologics. 2021;15:39–51. doi:10.2147/BTT.S252578
  • Udalova I, Monaco C, Nanchahal J, Feldmann M. Anti-TNF Therapy. Microbiol Spectr. 2016;4(4). doi:10.1128/microbiolspec.MCHD-0022-2015
  • Megna M, Fornaro L, Potestio L, et al. Efficacy and safety of anti-TNF Biosimilars for psoriasis in pediatric and geriatric populations: a 72-week real-life study. Psoriasis. 2022;12:199–204. doi:10.2147/PTT.S365493
  • Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology. 2010;49(7):1215–1228. doi:10.1093/rheumatology/keq031
  • Knight DM, Trinh H, Le J, et al. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol Immunol. 1993;30(16):1443–1453. doi:10.1016/0161-5890(93)90106-l
  • Burmester GR, Panaccione R, Gordon KB, McIlraith MJ, Lacerda APM. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Ann Rheum Dis. 2013;72(4):517–524. doi:10.1136/annrheumdis-2011-201244
  • Caldarola G, Sgambato A, Fanali C, et al. HLA-Cw6 allele, NFkB1 and NFkBIA polymorphisms play no role in predicting response to etanercept in psoriatic patients. Pharmacogenet Genomics. 2016;26(9):423–427. doi:10.1097/FPC.0000000000000233
  • Ryan C, Kelleher J, Fagan MF, et al. Genetic markers of treatment response to tumour necrosis factor-α inhibitors in the treatment of psoriasis. Clin Exp Dermatol. 2014;39(4):519–524. doi:10.1111/ced.12323
  • Gallo E, Cabaleiro T, Román M, et al. The relationship between tumour necrosis factor (TNF)-α promoter and IL12B/IL-23R genes polymorphisms and the efficacy of anti-TNF-α therapy in psoriasis: a case-control study. Br J Dermatol. 2013;169(4):819–829. doi:10.1111/bjd.12425
  • Batalla A, Coto E, González-Fernández D, et al. The Cw6 and late-cornified envelope genotype plays a significant role in anti-tumor necrosis factor response among psoriatic patients. Pharmacogenet Genomics. 2015;25(6):313–316. doi:10.1097/FPC.0000000000000136
  • Linares-Pineda TM, Cañadas-Garre M, Sánchez-Pozo A, Calleja-Hernández MÁ. Gene polymorphisms as predictors of response to biological therapies in psoriasis patients. Pharmacol Res. 2016;113:71–80. doi:10.1016/j.phrs.2016.07.020
  • Murdaca G, Gulli R, Spanò F, et al. TNF-α gene polymorphisms: association with disease susceptibility and response to anti-TNF-α treatment in psoriatic arthritis. J Invest Dermatol. 2014;134(10):2503–2509. doi:10.1038/jid.2014.123
  • Vasilopoulos Y, Manolika M, Zafiriou E, et al. Pharmacogenetic analysis of TNF, TNFRSF1A, and TNFRSF1B gene polymorphisms and prediction of response to anti-TNF therapy in psoriasis patients in the Greek population. Mol Diagn Ther. 2012;16(1):29–34. doi:10.1007/BF03256427
  • van Vugt LJ, van den Reek JMPA, Coenen MJH, de Jong EMGJ. A systematic review of pharmacogenetic studies on the response to biologics in patients with psoriasis. Br J Dermatol. 2018;178(1):86–94. doi:10.1111/bjd.15753
  • Talamonti M, D’Adamio S, Bianchi L, Galluzzo M. The role of pharmacogenetics in chronic plaque psoriasis: update of the literature. Mol Diagn Ther. 2017;21(5):467–480. doi:10.1007/s40291-017-0274-z
  • Prieto-Pérez R, Cabaleiro T, Daudén E, Ochoa D, Roman M, Abad-Santos F. Genetics of psoriasis and pharmacogenetics of biological drugs. Autoimmune Dis. 2013;2013:613086. doi:10.1155/2013/613086
  • Ovejero-Benito MC, Prieto-Pérez R, Llamas-Velasco M, et al. Polymorphisms associated with etanercept response in moderate-to-severe plaque psoriasis. Pharmacogenomics. 2017;18(7):631–638. doi:10.2217/pgs-2017-0014
  • Julià A, Ferrándiz C, Dauden E, et al. Association of the PDE3A-SLCO1C1 locus with the response to anti-TNF agents in psoriasis. Pharmacogenomics J. 2015;15(4):322–325. doi:10.1038/tpj.2014.71
  • Prieto-Pérez R, Solano-López G, Cabaleiro T, et al. New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics J. 2018;18(1):70–75. doi:10.1038/tpj.2016.64
  • Tutuncu Z, Kavanaugh A, Zvaifler N, Corr M, Deutsch R, Boyle D. Fcgamma receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor alpha-blocking agents. Arthritis Rheum. 2005;52(9):2693–2696. doi:10.1002/art.21266
  • Tejasvi T, Stuart PE, Chandran V, et al. TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol. 2012;132(3 Pt 1):593–600. doi:10.1038/jid.2011.376
  • Seitz M, Wirthmüller U, Möller B, Villiger PM. The −308 tumour necrosis factor-alpha gene polymorphism predicts therapeutic response to TNFalpha-blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology. 2007;46(1):93–96. doi:10.1093/rheumatology/kel175
  • Coto-Segura P, Batalla A, González-Fernández D, et al. CDKAL1 gene variants affect the anti-TNF response among Psoriasis patients. Int Immunopharmacol. 2015;29(2):947–949. doi:10.1016/j.intimp.2015.11.008
  • Batalla A, Coto E, Gómez J, et al. IL17RA gene variants and anti-TNF response among psoriasis patients. Pharmacogenomics J. 2018;18(1):76–80. doi:10.1038/tpj.2016.70
  • Song GG, Seo YH, Kim J-H, Choi SJ, Ji JD, Lee YH. Association between TNF-α (−308 A/G, −238 A/G, −857 C/T) polymorphisms and responsiveness to TNF-α blockers in spondyloarthropathy, psoriasis and Crohn’s disease: a meta-analysis. Pharmacogenomics. 2015;16(12):1427–1437. doi:10.2217/pgs.15.90
  • Ovejero-Benito MC, Muñoz-Aceituno E, Sabador D, et al. Genome-wide association analysis of psoriasis patients treated with anti-TNF drugs. Exp Dermatol. 2020;29(12):1225–1232. doi:10.1111/exd.14215
  • Nishikawa R, Nagai H, Bito T, et al. Genetic prediction of the effectiveness of biologics for psoriasis treatment. J Dermatol. 2016;43(11):1273–1277. doi:10.1111/1346-8138.13412
  • Ovejero-Benito MC, Muñoz-Aceituno E, Sabador D, et al. Polymorphisms associated with optimization of biological therapy through drug dose reduction in moderate-to-severe psoriasis. J Eur Acad Dermatol Venereol. 2020;34(6):e271–e275. doi:10.1111/jdv.16256
  • Skarmoutsou E, Trovato C, Granata M, et al. Biological therapy induces expression changes in Notch pathway in psoriasis. Arch Dermatol Res. 2015;307(10):863–873. doi:10.1007/s00403-015-1594-7
  • Vageli DP, Exarchou A, Zafiriou E, Doukas PG, Doukas S, Roussaki-Schulze A. Effect of TNF-α inhibitors on transcriptional levels of pro-inflammatory interleukin-33 and Toll-like receptors-2 and −9 in psoriatic plaques. Exp Ther Med. 2015;10(4):1573–1577. doi:10.3892/etm.2015.2688
  • Pivarcsi A, Meisgen F, Xu N, Ståhle M, Sonkoly E. Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-α therapy. Br J Dermatol. 2013;169(3):563–570. doi:10.1111/bjd.12381
  • De Simone C, Farina M, Maiorino A, et al. TNF-alpha gene polymorphisms can help to predict response to etanercept in psoriatic patients. J Eur Acad Dermatol Venereol. 2015;29(9):1786–1790. doi:10.1111/jdv.13024
  • Prieto-Pérez R, Solano-López G, Cabaleiro T, et al. The polymorphism rs763780 in the IL-17F gene is associated with response to biological drugs in patients with psoriasis. Pharmacogenomics. 2015;16(15):1723–1731. doi:10.2217/pgs.15.107
  • Ustekinumab (STELARA). Prescribing information; 2016. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761044lbl.pdf. Accessed February 11, 2022.
  • Raposo I, Carvalho C, Bettencourt A, et al. Psoriasis pharmacogenetics: HLA-Cw*0602 as a marker of therapeutic response to ustekinumab. Eur J Dermatol. 2017;27(5):528–530. doi:10.1684/ejd.2017.3071
  • Talamonti M, Galluzzo M, van den Reek JM, et al. Role of the HLA-C*06 allele in clinical response to ustekinumab: evidence from real life in a large cohort of European patients. Br J Dermatol. 2017;177(2):489–496. doi:10.1111/bjd.15387
  • van Vugt LJ, van den Reek JMPA, Hannink G, Coenen MJH, de Jong EMGJ. Association of HLA-C*06:02 status with differential response to ustekinumab in patients with psoriasis: a systematic review and meta-analysis. JAMA Dermatol. 2019;155(6):708–715. doi:10.1001/jamadermatol.2019.0098
  • Anzengruber F, Ghosh A, Maul J-T, Drach M, Navarini AA. Limited clinical utility of HLA-Cw6 genotyping for outcome prediction in psoriasis patients under ustekinumab therapy: a monocentric, retrospective analysis. Psoriasis. 2017;8:7–11. doi:10.2147/PTT.S161437
  • Prieto-Pérez R, Llamas-Velasco M, Cabaleiro T, et al. Pharmacogenetics of ustekinumab in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics. 2017;18(2):157–164. doi:10.2217/pgs-2016-0122
  • Loft ND, Skov L, Iversen L, et al. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis. Pharmacogenomics J. 2018;18(3):494–500. doi:10.1038/tpj.2017.31
  • Connell WT, Hong J, Liao W. Genome-wide association study of ustekinumab response in psoriasis. Front Immunol. 2021;12:815121. doi:10.3389/fimmu.2021.815121
  • van den Reek JMPA, Coenen MJH, van de L’Isle Arias M, et al. Polymorphisms in CD84, IL12B and TNFAIP3 are associated with response to biologics in patients with psoriasis. Br J Dermatol. 2017;176(5):1288–1296. doi:10.1111/bjd.15005
  • Brodmerkel C, Li K, Garcet S, et al. Modulation of inflammatory gene transcripts in psoriasis vulgaris: differences between ustekinumab and etanercept. J Allergy Clin Immunol. 2019;143(5):1965–1969. doi:10.1016/j.jaci.2019.01.017
  • Galluzzo M, Boca AN, Botti E, et al. IL12B (p40) gene polymorphisms contribute to ustekinumab response prediction in psoriasis. Dermatology. 2016;232(2):230–236. doi:10.1159/000441719
  • Chiu H-Y, Wang T-S, Chan -C-C, Cheng Y-P, Lin S-J, Tsai T-F. Human leucocyte antigen-Cw6 as a predictor for clinical response to ustekinumab, an interleukin-12/23 blocker, in Chinese patients with psoriasis: a retrospective analysis. Br J Dermatol. 2014;171(5):1181–1188. doi:10.1111/bjd.13056
  • Dand N, Duckworth M, Baudry D, et al. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J Allergy Clin Immunol. 2019;143(6):2120–2130. doi:10.1016/j.jaci.2018.11.038
  • Ruggiero A, Potestio L, Camela E, Fabbrocini G, Megna M. Bimekizumab for the treatment of psoriasis: a review of the current knowledge. Psoriasis. 2022;12:127–137. doi:10.2147/PTT.S367744
  • Megna M, Potestio L, Camela E, Fabbrocini G, Ruggiero A. Ixekizumab and brodalumab indirect comparison in the treatment of moderate to severe psoriasis: results from an Italian single-center retrospective study in a real-life setting. Dermatol Ther. 2022;e15667. doi:10.1111/dth.15667
  • Costanzo A, Bianchi L, Flori ML, et al. Secukinumab shows high efficacy irrespective of HLA-Cw6 status in patients with moderate-to-severe plaque-type psoriasis: SUPREME study. Br J Dermatol. 2018;179(5):1072–1080. doi:10.1111/bjd.16705
  • Papini M, Cusano F, Romanelli M, et al. Secukinumab shows high efficacy irrespective of HLA-Cw6 status in patients with moderate-to-severe plaque-type psoriasis: results from extension phase of the SUPREME study. Br J Dermatol. 2019;181(2):413–414. doi:10.1111/bjd.18013
  • Anzengruber F, Drach M, Maul J-T, Kolios AG, Meier B, Navarini AA. Therapy response was not altered by HLA-Cw6 status in psoriasis patients treated with secukinumab: a retrospective case series. J Eur Acad Dermatol Venereol. 2018;32(7):e274–e276. doi:10.1111/jdv.14808
  • van Vugt LJ, van den Reek JMPA, Meulewaeter E, et al. Response to IL-17A inhibitors secukinumab and ixekizumab cannot be explained by genetic variation in the protein-coding and untranslated regions of the IL-17A gene: results from a multicentre study of four European psoriasis cohorts. J Eur Acad Dermatol Venereol. 2020;34(1):112–118. doi:10.1111/jdv.15787
  • Hawkes JE, Yan BY, Chan TC, Krueger JG. Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. J Immunol. 2018;201(6):1605–1613. doi:10.4049/jimmunol.1800013
  • Ruggiero A, Martora F, Picone V, Marano L, Fabbrocini G, Marasca C. Paradoxical hidradenitis suppurativa during biologic therapy, an emerging challenge: a systematic review. Biomedicines. 2022;10(2):455. doi:10.3390/biomedicines10020455
  • Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021;397(10275):754–766. doi:10.1016/S0140-6736(21)00184-7
  • Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129(6):1339–1350. doi:10.1038/jid.2009.59
  • Ruggiero A, Fabbrocini G, Cinelli E, Ocampo Garza SS, Camela E, Megna M. Anti-interleukin-23 for psoriasis in elderly patients: guselkumab, risankizumab and tildrakizumab in real-world practice. Clin Exp Dermatol. 2022;47(3):561–567. doi:10.1111/ced.14979
  • Megna M, Tommasino N, Potestio L, et al. Real-world practice indirect comparison between guselkumab, risankizumab, and tildrakizumab: results from an Italian 28-week retrospective study. J Dermatolog Treat. 2022:1–8. doi:10.1080/09546634.2022.2081655
  • Megna M, Potestio L, Ruggiero A, Camela E, Fabbrocini G. Guselkumab is efficacious and safe in psoriasis patients who failed anti-IL17: a 52-week real-life study. J Dermatolog Treat. 2022;1–5. doi:10.1080/09546634.2022.2036674
  • Yang Y, Xie S, Jiang W, Tang S, Shi Y. Discovering novel biomarkers associated with the pathogenesis of psoriasis: evidence from bioinformatic analysis. Int J Gen Med. 2022;15:2817–2833. doi:10.2147/IJGM.S354985
  • Blauvelt A, Tsai T-F, Langley RG, et al. Consistent safety profile with up to 5 years of continuous treatment with guselkumab: pooled analyses from the Phase 3 VOYAGE 1 and VOYAGE 2 trials of patients with moderate-to-severe psoriasis. J Am Acad Dermatol. 2022;86(4):827–834. doi:10.1016/j.jaad.2021.11.004
  • Blauvelt A, Papp KA, Griffiths CEM, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with Adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the Phase III, double-blinded, placebo- and active comparator. J Am Acad Dermatol. 2017;76(3):405–417. doi:10.1016/j.jaad.2016.11.041
  • Ruggiero A, Fabbrocini G, Cinelli E, Megna M. Efficacy and safety of guselkumab in psoriasis patients who failed ustekinumab and/or anti-interleukin-17 treatment: a real-life 52-week retrospective study. Dermatol Ther. 2021;34(1):e14673. doi:10.1111/dth.14673
  • Megna M, Fabbrocini G, Cinelli E, Camela E, Ruggiero A. Guselkumab in moderate to severe psoriasis in routine clinical care: an Italian 44-week real-life experience. J Dermatolog Treat. 2022;33(2):1074–1078. doi:10.1080/09546634.2020.1800577
  • Ruggiero A, Fabbrocini G, Cinelli E, Megna M. Guselkumab and risankizumab for psoriasis: a 44-week indirect real-life comparison. J Am Acad Dermatol. 2021;85(4):1028–1030. doi:10.1016/j.jaad.2021.01.025
  • Gordon KB, Strober B, Lebwohl M, et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet. 2018;392(10148):650–661.
  • Augustin M, Lambert J, Zema C, et al. Effect of risankizumab on patient-reported outcomes in moderate to severe psoriasis: the ultimma-1 and ultimma-2 randomized clinical trials. JAMA Dermatol. 2020;156(12):1344–1353. doi:10.1001/jamadermatol.2020.3617
  • Lebwohl MG, Soliman AM, Yang H, et al. Impact of Risankizumab on PASI90 and DLQI0/1 duration in moderate-to-severe psoriasis: a post hoc analysis of four phase 3 clinical trials. Dermatol Ther. 2022;12(2):407–418. doi:10.1007/s13555-021-00660-3
  • Megna M, Cinelli E, Gallo L, Camela E, Ruggiero A, Fabbrocini G. Risankizumab in real life: preliminary results of efficacy and safety in psoriasis during a 16-week period. Arch Dermatol Res. 2021;314:619–623. doi:10.1007/s00403-021-02200-7
  • Megna M, Potestio L, Ruggiero A, Camela E, Fabbrocini G. Risankizumab treatment in psoriasis patients who failed anti-IL17: a 52-week real-life study. Dermatol Ther. 2022;35:e15524. doi:10.1111/dth.15524
  • Reich K, Papp KA, Blauvelt A, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet. 2017;390(10091):276–288. doi:10.1016/S0140-6736(17)31279-5
  • Verbenko DA, Karamova AE, Artamonova OG, et al. Apremilast pharmacogenomics in Russian patients with moderate-to-severe and severe psoriasis. J Pers Med. 2020;11(1):20. doi:10.3390/jpm11010020
  • Bai F, Zheng W, Dong Y, et al. Serum levels of adipokines and cytokines in psoriasis patients: a systematic review and meta-analysis. Oncotarget. 2018;9(1):1266–1278. doi:10.18632/oncotarget.22260
  • Khashaba SA, Attwa E, Said N, Ahmed S, Khattab F. Serum YKL-40 and IL 17 in Psoriasis: reliability as prognostic markers for disease severity and responsiveness to treatment. Dermatol Ther. 2021;34(1):e14606. doi:10.1111/dth.14606
  • Olejniczak-Staruch I, Narbutt J, Bednarski I, et al. Interleukin 22 and 6 serum concentrations decrease under long-term biologic therapy in psoriasis. Postep dermatologii i Alergol. 2020;37(5):705–711. doi:10.5114/ada.2020.100481
  • Wang X, Kaiser H, Kvist-Hansen A, et al. IL-17 pathway members as potential biomarkers of effective systemic treatment and cardiovascular disease in patients with moderate-to-severe psoriasis. Int J Mol Sci. 2022;23(1). doi:10.3390/ijms23010555
  • Xu M, Deng J, Xu K, et al. In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicine. Theranostics. 2019;9(9):2475–2488. doi:10.7150/thno.31144
  • Elgharib I, Khashaba SA, Elsaid HH, Sharaf MM. Serum elafin as a potential inflammatory marker in psoriasis. Int J Dermatol. 2019;58(2):205–209. doi:10.1111/ijd.14217
  • Divyapriya D, Priyadarssini M, Indhumathi S, Rajappa M, Chandrashekar L, Mohanraj PS. Evaluation of cytokine gene expression in psoriasis. Postep dermatologii i Alergol. 2021;38(5):858–865. doi:10.5114/ada.2021.110109
  • Timis TL, Orasan RI. Understanding psoriasis: role of miRNAs. Biomed Rep. 2018;9(5):367–374. doi:10.3892/br.2018.1146
  • Aydin B, Arga KY, Karadag AS. Omics-driven biomarkers of psoriasis: recent insights, current challenges, and future prospects. Clin Cosmet Investig Dermatol. 2020;13:611–625. doi:10.2147/CCID.S227896
  • El-Komy M, Amin I, El-Hawary MS, Saadi D, Shaker O. Upregulation of the miRNA-155, miRNA-210, and miRNA-20b in psoriasis patients and their relation to IL-17. Int J Immunopathol Pharmacol. 2020;34:2058738420933742. doi:10.1177/2058738420933742
  • Lättekivi F, Guljavina I, Midekessa G, et al. Profiling blood serum extracellular vesicles in plaque psoriasis and psoriatic arthritis patients reveals potential disease biomarkers. Int J Mol Sci. 2022;23(7):4005. doi:10.3390/ijms23074005
  • Wu R, Zeng J, Yuan J, et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest. 2018;128(6):2551–2568. doi:10.1172/JCI97426
  • Chen X-M, Yao D-N, Wang M-J, et al. Deep Sequencing of serum exosomal microRNA level in psoriasis vulgaris patients. Front Med. 2022;9:895564. doi:10.3389/fmed.2022.895564
  • Abdallah HY, Tawfik NZ, Soliman NH, Eldeen LAT. The lncRNA PRINS-miRNA-mRNA axis gene expression profile as a circulating biomarker panel in psoriasis. Mol Diagn Ther. 2022;26(4):451–465. doi:10.1007/s40291-022-00598-y
  • Qiao M, Li R, Zhao X, Yan J, Sun Q. Up-regulated lncRNA-MSX2P1 promotes the growth of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p and activating S100A7. Exp Cell Res. 2018;363(2):243–254. doi:10.1016/j.yexcr.2018.01.014
  • Ciążyńska M, Olejniczak-Staruch I, Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A. The role of NLRP1, NLRP3, and AIM2 inflammasomes in psoriasis: review. Int J Mol Sci. 2021;22(11):5898. doi:10.3390/ijms22115898