186
Views
3
CrossRef citations to date
0
Altmetric
Original Research

High-Throughput RNA Sequencing Reveals the Effect of NB-UVB Phototherapy on Major Inflammatory Molecules of Lesional Psoriasis

, ORCID Icon, , , , & show all
Pages 133-149 | Published online: 26 Nov 2021

References

  • Chandran V, Raychaudhuri SP. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmun. 2010;34(3):J314–J321. doi:10.1016/j.jaut.2009.12.001
  • Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445(7130):866. doi:10.1038/nature05663
  • Harden JL, Krueger JG, Bowcock AM. The immunogenetics of psoriasis: a comprehensive review. J Autoimmun. 2015;64:66–73. doi:10.1016/j.jaut.2015.07.008
  • Hemne P, Kunghatkar R, Dhoble S, Moharil S, Singh V. Phosphor for phototherapy: review on psoriasis. Luminescence. 2017;32(3):260–270. doi:10.1002/bio.3266
  • Enk CD, Sredni D, Blauvelt A, Katz SI. Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro. J Immunol. 1995;154(9):4851–4856.
  • Coimbra S, Oliveira H, Reis F, et al. Interleukin (IL)‐22, IL‐17, IL‐23, IL‐8, vascular endothelial growth factor and tumour necrosis factor‐α levels in patients with psoriasis before, during and after psoralen–ultraviolet A and narrowband ultraviolet B therapy. Br J Dermatol. 2010;163(6):1282–1290. doi:10.1111/j.1365-2133.2010.09992.x
  • Weatherhead SC, Farr PM, Jamieson D, et al. Keratinocyte apoptosis in epidermal remodeling and clearance of psoriasis induced by UV radiation. J Investig Dermatol. 2011;131(9):1916–1926. doi:10.1038/jid.2011.134
  • Zhang D, Chen Y, Chen L, et al. Ultraviolet irradiation promotes FOXP3 transcription via p53 in psoriasis. Exp Dermatol. 2016;25(7):513–518. doi:10.1111/exd.12942
  • da Rosa JC, Kim J, Tian S, Tomalin LE, Krueger JG, Suárez-Fariñas M. Shrinking the psoriasis assessment gap: early gene-expression profiling accurately predicts response to long-term treatment. J Investig Dermatol. 2017;137(2):305–312. doi:10.1016/j.jid.2016.09.015
  • Ungar B, Garcet S, Gonzalez J, et al. An integrated model of atopic dermatitis biomarkers highlights the systemic nature of the disease. J Investig Dermatol. 2017;137(3):603–613. doi:10.1016/j.jid.2016.09.037
  • Zhang X-J, Huang W, Yang S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet. 2009;41(2):205. doi:10.1038/ng.310
  • Garber K. Psoriasis: From Bed to Bench and Back. Nature Publishing Group; 2011.
  • Roy PK, Datta A, Chatterjee AN. Saturation effects on immunopathogenic mechanism of psoriasis: a theoretical approach. Journal of Applied Functional Analysis. 2011;13(3):310–318.
  • Li B, Tsoi LC, Swindell WR, et al. Transcriptome analysis of psoriasis in a large case–control sample: RNA-seq provides insights into disease mechanisms. J Investig Dermatol. 2014;134(7):1828–1838. doi:10.1038/jid.2014.28
  • Jabbari A, Suárez-Fariñas M, Dewell S, Krueger JG. Transcriptional profiling of psoriasis using RNA-seq reveals previously unidentified differentially expressed genes. J Invest Dermatol. 2012;132(1):246. doi:10.1038/jid.2011.267
  • Meisgen F, Xu N, Wei T, et al. MiR‐21 is up‐regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol. 2012;21(4):312–314. doi:10.1111/j.1600-0625.2012.01462.x
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. doi:10.1093/bioinformatics/btp616
  • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288–4297. doi:10.1093/nar/gks042
  • NIH. Metascape. 2021.
  • (LHRI) LoHRaI. The database for annotation, visualization and integrated discovery (DAVID). 2021.
  • QIAGEN US. Ingenuity pathway analysis software. 2021.
  • Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–530. doi:10.1093/bioinformatics/btt703
  • Johnson-Huang LM, Suárez-Farinas M, Sullivan-Whalen M, Gilleaudeau P, Krueger JG, Lowes MA. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J Investig Dermatol. 2010;130(11):2654–2663. doi:10.1038/jid.2010.166
  • Aydin B, Arga KY, Karadag AS. Omics-driven biomarkers of psoriasis: recent insights, current challenges, and future prospects. Clin Cosmet Investig Dermatol. 2020;13:611. doi:10.2147/CCID.S227896
  • Rácz E, Prens EP, Kurek D, et al. Effective treatment of psoriasis with narrow-band UVB phototherapy is linked to suppression of the IFN and Th17 pathways. J Investig Dermatol. 2011;131(7):1547–1558. doi:10.1038/jid.2011.53
  • Bajaj S, Gautam R, Khurana A, Arora P, Sharma N. Effect of narrow band ultraviolet B phototherapy on T helper 17 cell specific cytokines (interleukins-17, 22 and 23) in psoriasis vulgaris. J Dermatol Treat. 2017;28(1):14–17. doi:10.1080/09546634.2016.1177162
  • Matos TR, Ling TC, Sheth V. Ultraviolet B radiation therapy for psoriasis: pursuing the optimal regime. Clin Dermatol. 2016;34(5):587–593. doi:10.1016/j.clindermatol.2016.05.008
  • Yin L, Hu Y, Xu J, Guo J, Tu J, Yin Z. Ultraviolet B inhibits IL-17A/TNF-α-stimulated activation of human dermal fibroblasts by decreasing the expression of IL-17RA and IL-17RC on fibroblasts. Front Immunol. 2017;8:91. doi:10.3389/fimmu.2017.00091
  • Hochberg M, Zeligson S, Amariglio N, Rechavi G, Ingber A, Enk C. Genomic‐scale analysis of psoriatic skin reveals differentially expressed insulin‐like growth factor‐binding protein‐7 after phototherapy. Br J Dermatol. 2007;156(2):289–300. doi:10.1111/j.1365-2133.2006.07628.x
  • Uzuncakmak TK, Karadag AS, Ozkanli S, et al. Alteration of tissue expression of human beta defensin-1 and human beta defensin-2 in psoriasis vulgaris following phototherapy. Biotech Histochem. 2020;95(4):243–248. doi:10.1080/10520295.2019.1673901
  • D’erme AM, Wilsmann-Theis D, Wagenpfeil J, et al. IL-36γ (IL-1F9) is a biomarker for psoriasis skin lesions. J Investig Dermatol. 2015;135(4):1025–1032. doi:10.1038/jid.2014.532
  • Swindell WR, Johnston A, Voorhees JJ, Elder JT, Gudjonsson JE. Dissecting the psoriasis transcriptome: inflammatory-and cytokine-driven gene expression in lesions from 163 patients. BMC Genom. 2013;14(1):527. doi:10.1186/1471-2164-14-527
  • Keermann M, Kõks S, Reimann E, Prans E, Abram K, Kingo K. Transcriptional landscape of psoriasis identifies the involvement of IL36 and IL36RN. BMC Genom. 2015;16(1):1–11. doi:10.1186/s12864-015-1508-2
  • Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003–1018. doi:10.1016/j.immuni.2013.11.010
  • Hussain S, Berki DM, Choon S-E, et al. IL36RN mutations define a severe autoinflammatory phenotype of generalized pustular psoriasis. J Allergy Clin Immunol. 2015;135(4):1067–1070. e9. doi:10.1016/j.jaci.2014.09.043
  • Pietrzak AT, Zalewska A, Chodorowska G, et al. Cytokines and anticytokines in psoriasis. Clinica chimica acta. 2008;394(1–2):7–21. doi:10.1016/j.cca.2008.04.005
  • Takahashi H, Tsuji H, Hashimoto Y, Ishida‐Yamamoto A, Iizuka H. Serum cytokines and growth factor levels in Japanese patients with psoriasis. Clin Exp Dermatol. 2010;35(6):645–649. doi:10.1111/j.1365-2230.2009.03704.x
  • Cardoso PRG, de Andrade Lima EV, de Andrade Lima MM, et al. Clinical and cytokine profile evaluation in Northeast Brazilian psoriasis plaque-type patients. Eur Cytokine Netw. 2016;27(1):1–5. doi:10.1684/ecn.2016.0371
  • Piskin G, Koomen CW, Picavet D, Bos JD, Teunissen MB. Ultraviolet‐B irradiation decreases IFN‐γ and increases IL‐4 expression in psoriatic lesional skin in situ and in cultured dermal T cells derived from these lesions. Exp Dermatol. 2003;12(2):172–180. doi:10.1034/j.1600-0625.2003.120208.x
  • Piskin G, Sylva-Steenland RM, Bos JD, Teunissen MB. T cells in psoriatic lesional skin that survive conventional therapy with NB-UVB radiation display reduced IFN-γ expression. Arch Dermatol Res. 2004;295(12):509–516. doi:10.1007/s00403-004-0460-9
  • Piskin G, Tursen U, Sylva‐Steenland R, Bos J, Teunissen M. Clinical improvement in chronic plaque‐type psoriasis lesions after narrow‐band UVB therapy is accompanied by a decrease in the expression of IFN‐γ inducers–IL‐12, IL‐18 and IL‐23. Exp Dermatol. 2004;13(12):764–772. doi:10.1111/j.0906-6705.2004.00246.x
  • Platanias LC. Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375–386. doi:10.1038/nri1604
  • Kotenko SV, Gallagher G, Baurin VV, et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4(1):69–77. doi:10.1038/ni875
  • Darnell JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–1421. doi:10.1126/science.8197455
  • Silvennoinen O, Ihle JN, Schlessinger J, Levy DE. Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature. 1993;366(6455):583–585. doi:10.1038/366583a0
  • Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Ann Rev Biochem. 1998;67(1):227–264. doi:10.1146/annurev.biochem.67.1.227
  • Chung JH, Youn SH, Koh WS, et al. Ultraviolet B irradiation-enhanced interleukin (IL)-6 production and mRNA expression are mediated by IL-1α in cultured human keratinocytes. J Investig Dermatol. 1996;106(4):715–720. doi:10.1111/1523-1747.ep12345608
  • Valley QS. IL-6 signaling. 2021.
  • Kim AL, Labasi JM, Zhu Y, et al. Role of p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1 hairless mice. J Investig Dermatol. 2005;124(6):1318–1325. doi:10.1111/j.0022-202X.2005.23747.x
  • Muthusamy V, Piva TJ. The UV response of the skin: a review of the MAPK, NFκB and TNFα signal transduction pathways. Arch Dermatol Res. 2010;302(1):5–17. doi:10.1007/s00403-009-0994-y
  • Zhuang Y, Han C, Li B, et al. NB-UVB irradiation downregulates keratin-17 expression in keratinocytes by inhibiting the ERK1/2 and STAT3 signaling pathways. Arch Dermatol Res. 2018;310(2):147–156. doi:10.1007/s00403-018-1812-1
  • Salvador JM, Brown-Clay JD, Fornace AJ. Gadd45 in stress signaling, cell cycle control, and apoptosis. Gadd45 Stress Sensor Genes. 2013;2013:1–19.
  • Maeda T, Hanna AN, Sim AB, Chua PP, Chong MT, Tron VA. GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Investig Dermatol. 2002;119(1):22–26. doi:10.1046/j.1523-1747.2002.01781.x
  • Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998;95(4):521–530. doi:10.1016/S0092-8674(00)81619-0
  • Emanuel P, Scheinfeld N. A review of DNA repair and possible DNA-repair adjuvants and selected natural anti-oxidants. Dermatol Online J. 2007;13(3). doi:10.5070/D39WW9F65D
  • El-Abaseri TB, Hammiller B, Repertinger SK, Hansen LA. The epidermal growth factor receptor increases cytokine production and cutaneous inflammation in response to ultraviolet irradiation. Int Scholar Res Notices. 2013;2013:848705.
  • Boniface K, Guignouard E, Pedretti N, et al. A role for T cell‐derived interleukin 22 in psoriatic skin inflammation. Clin Exp Immunol. 2007;150(3):407–415. doi:10.1111/j.1365-2249.2007.03511.x
  • Sa SM, Valdez PA, Wu J, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol. 2007;178(4):2229–2240. doi:10.4049/jimmunol.178.4.2229
  • Rutz S, Eidenschenk C, Ouyang W. IL‐22, not simply a Th17 cytokine. Immunol Rev. 2013;252(1):116–132. doi:10.1111/imr.12027
  • Wolk K, Witte E, Wallace E, et al. IL‐22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. 2006;36(5):1309–1323. doi:10.1002/eji.200535503
  • Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a TH 17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445(7128):648–651. doi:10.1038/nature05505
  • Botti E, Spallone G, Caruso R, Monteleone G, Chimenti S, Costanzo A. Psoriasis, from pathogenesis to therapeutic strategies: IL-21 as a novel potential therapeutic target. Curr Pharm Biotechnol. 2012;13(10):1861–1867. doi:10.2174/138920112802273281
  • Borkowski AW, Gallo RL. UVB radiation illuminates the role of TLR3 in the epidermis. J Investig Dermatol. 2014;134(9):2315–2320. doi:10.1038/jid.2014.167
  • Gao W, Xiong Y, Li Q, Yang H. Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. Front Physiol. 2017;8:508. doi:10.3389/fphys.2017.00508
  • Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med. 2003;197(4):403–411. doi:10.1084/jem.20021633
  • Karnell JL, Rieder SA, Ettinger R, Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev. 2019;141:92–103. doi:10.1016/j.addr.2018.12.005
  • Noelle RJ, Roy M, Shepherd DM, Stamenkovic I, Ledbetter JA, Aruffo A. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci. 1992;89(14):6550–6554. doi:10.1073/pnas.89.14.6550
  • Jenisch S, Koch S, Henseler T, et al. Corneodesmosin gene polymorphism demonstrates strong linkage disequilibrium with HLA and association with psoriasis vulgaris. Tissue Antigens. 1999;54(5):439–449. doi:10.1034/j.1399-0039.1999.540501.x
  • Orlik C, Deibel D, Küblbeck J, et al. Keratinocytes costimulate naive human T cells via CD2: a potential target to prevent the development of proinflammatory Th1 cells in the skin. Cell Mol Immunol. 2020;17(4):380–394. doi:10.1038/s41423-019-0261-x