157
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Machine Learning For Tuning, Selection, And Ensemble Of Multiple Risk Scores For Predicting Type 2 Diabetes

, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 189-198 | Published online: 05 Nov 2019

References

  • Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study. Diabetes Care. 1997. doi:10.2337/diacare.20.4.537
  • Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002. doi:10.1056/NEJMoa012512
  • Gillies CL, Abrams KR, Lambert PC, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ Br Med J. 2007;334:299. doi:10.1136/bmj.39063.689375.5517237299
  • Gillies CL, Lambert PC, Abrams KR, et al. Different strategies for screening and prevention of type 2 diabetes in adults: cost effectiveness analysis. BMJ. 2008;336:1180–1185. doi:10.1136/bmj.39545.585289.2518426840
  • Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: a 20-year follow-up study. Lancet. 2008;371:1783–1789. doi:10.1016/S0140-6736(08)60766-718502303
  • Glümer C, Vistisen D, Borch-Johnsen K, Colagiuri S. Risk scores for type 2 diabetes can be applied in some populations but not all. Diabetes Care. 2006;29:410–414. doi:10.2337/diacare.29.02.06.dc05-094516443896
  • Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ. 2011;343:d7163–d7163. doi:10.1136/bmj.d716322123912
  • Aekplakorn W, Bunnag P, Woodward M, et al. A risk score for predicting incident diabetes in the Thai population. Diabetes Care. 2006;29:1872–1877. doi:10.2337/dc05-214116873795
  • Balkau B, Lange C, Fezeu L, et al. Predicting diabetes: clinical, biological, and genetic approaches: Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care. 2008;31:2056–2061. doi:10.2337/dc08-036818689695
  • Zhou X, Qiao Q, Ji L, et al. Nonlaboratory-based risk assessment algorithm for undiagnosed type 2 diabetes developed on a nation-wide diabetes survey. Diabetes Care. 2013. doi:10.2337/dc13-0593
  • Ye X, Zong G, Liu X, et al. Development of a new risk score for incident type 2 diabetes using updated diagnostic criteria in middle-aged and older Chinese. PLoS One. 2014. doi:10.1371/journal.pone.0097042
  • Gao WG, Dong YH, Pang ZC, et al. A simple Chinese risk score for undiagnosed diabetes. Diabet Med. 2010. doi:10.1111/j.1464-5491.2010.02943.x
  • Wen J, Hao J, Liang Y, et al. A non-invasive risk score for predicting incident diabetes among rural Chinese people: a village-based cohort study. PLoS One. 2017. doi:10.1371/journal.pone.0186172
  • Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003. doi:10.2337/diacare.26.3.725
  • Chen L, Magliano DJ, Balkau B, et al. AUSDRISK: an Australian type 2 diabetes risk assessment tool based on demographic, lifestyle and simple anthropometric measures. Med J Aust. 2010. doi:10.5694/j.1326-5377.2010.tb03478.x
  • Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J. 2017. doi:10.1016/j.csbj.2016.12.005
  • Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ. Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak. 2010. doi:10.1186/1472-6947-10-16
  • Zou Q, Qu K, Luo Y, Yin D, Ju Y, Tang H. Predicting diabetes mellitus with machine learning techniques. Front Genet. 2018. doi:10.3389/fgene.2018.00515
  • Pappada SM, Cameron BD, Rosman PM. Development of a neural network for prediction of glucose concentration in type 1 diabetes patients. J Diabetes Sci Technol. 2008. doi:10.1177/193229680800200507
  • Zhou Z-H. Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC; 2012.
  • Ruta D, Gabrys B. Classifier selection for majority voting. Inf Fusion. 2005. doi:10.1016/j.inffus.2004.04.008
  • Bi Y, Lu J, Wang W, et al. Cohort profile: risk evaluation of cancers in Chinese diabetic individuals: a longitudinal (REACTION) study. J Diabetes. 2014. doi:10.1111/1753-0407.12108
  • Tibshirani R. Regression selection and shrinkage via the Lasso. J R Stat Soc B. 1996. doi:10.2307/2346178
  • Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc. 2001. doi:10.1198/016214501753382273
  • Zhang CH. Nearly unbiased variable selection under minimax concave penalty. Ann Stat. 2010. doi:10.1214/09-AOS729
  • Fan J, Lv J. A selective overview of variable selection in high dimensional feature space. Stat Sin. 2010. doi:10.1063/1.3520482
  • Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Ser B Stat Methodol. 2008;70:849–911. doi:10.1111/j.1467-9868.2008.00674.x
  • Sullivan LM, Massaro JM, D’Agostino RB. Presentation of multivariate data for clinical use: the Framingham study risk score functions. Stat Med. 2004;23:1631–1660. doi:10.1002/sim.174215122742
  • Opitz DW, Shavlik JW. Generating accurate and diverse members of a neural-network ensemble. Adv Neural Inf Process Syst. 1996.
  • Ruta D, Gabrys B Analysis of the correlation between majority voting error and the diversity measures in multiple classifier systems. Soft Computing and Intelligent Systems for Industry: Proceedings and Scientific Program : Fourth International ICSC Symposium; 2001.
  • Windeatt T. Diversity measures for multiple classifier system analysis and design. Inf Fusion. 2005;6:21–36. doi:10.1016/j.inffus.2004.04.002
  • Rokach L. Ensemble-based classifiers. Artif Intell Rev. 2010;33:1–39. doi:10.1007/s10462-009-9124-7
  • Wolpert DH. Stacked generalization. Neural Networks. 1992;5:241–259. doi:10.1016/S0893-6080(05)80023-1
  • Breiman L. Stacked regressions. Mach Learn. 1996;24:49–64. doi:10.1007/BF00117832
  • van der Laan MJ, Polley EC, Hubbard AE. Super Learner. Stat Appl Genet Mol Biol. 2007;6. doi:10.2202/1544-6115.1309
  • Debray TPA, Koffijberg H, Nieboer D, Vergouwe Y, Steyerberg EW, Moons KGM. Meta-analysis and aggregation of multiple published prediction models. Stat Med. 2014;33:2341–2362. doi:10.1002/sim.608024752993
  • Heianza Y, Arase Y, Hsieh SD, et al. Development of a new scoring system for predicting the 5 year incidence of type 2 diabetes in Japan: the Toranomon Hospital Health Management Center Study 6 (TOPICS 6). Diabetologia. 2012;55:3213–3223. doi:10.1007/s00125-012-2712-022955996
  • Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev. 2000;16:164–171. doi:10.1002/1520-7560(200005/06)16:3<164::aid-dmrr103>3.0.co;2-r10867715
  • Chen F, Xue Y, Tan MT, Chen P. Efficient statistical tests to compare Youden index: accounting for contingency correlation. Stat Med. 2015;34:1560–1576. doi:10.1002/sim.643225640747
  • Kengne AP, Beulens JWJ, Peelen LM, et al. Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. Lancet Diabetes Endocrinol. 2014;2:19–29. doi:10.1016/S2213-8587(13)70103-724622666