162
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Quality Assurance of Personal Radiation Shield for Kilovoltage Photon: A Multicentre Experience

Pages 1263-1270 | Published online: 24 Mar 2021

References

  • Institute of Physics and Engineering in Medicine. Medical and Dental Guidance Notes: A Good Practice Guide on All Aspects of Ionising Radiation Protection in the Clinical Environment. York: Institute of Physics and Engineering in Medicine; 2002.
  • Michel R, Zorn MJ. Implementation of an X-ray radiation protective equipment inspection program. Health Phys. 2002;82(2 Suppl):S51–S53. doi:10.1097/00004032-200202001-00012
  • Lambert K, McKeon T. Inspection of lead aprons: criteria for rejection. Health Phys. 2001;80:S67–S69. doi:10.1097/00004032-200105001-00008
  • Australian/New Zealand Standard™. Occupational Protective Gloves. Part 1: Selection, Use and Maintenance. 2000. AS/NZS 2161.1.
  • Matsuda M, Suzuki T. Evaluation of lead aprons and their maintenance and management at our hospital. J Anesth. 2016;30(3):518–521. doi:10.1007/s00540-016-2140-2
  • Oppliger-Schäfer D, Roser HW. Quality assurance of X-ray protection clothing at the university hospital basel. In: Annual Conference of SSRMP; 2009; Basel. 1–5.
  • Uche CH, Chimuanya UD, Okeji MC, Onwugalu E. How efficient are the lead aprons used for radiation protection in our hospitals. Indian j Appl Res. 2018;8(2).
  • Livingstone RS, Varghese A. A simple quality control tool for assessing integrity of lead equivalent aprons. Indian J Radiol Imaging. 2018;28(2):258. doi:10.4103/ijri.IJRI_374_17
  • Oyar O, Kislalioglu A. How protective are the lead aprons we use against ionizing radiation? Diagn Intervent Radiol. 2012;18(2):147.
  • Murphy PH, Wu Y, Glaze SA. Attenuation properties of lead composite aprons. Radiology. 1993;186(1):269–272. doi:10.1148/radiology.186.1.8416577
  • Papadopoulos N, Papaefstathiou C, Kaplanis PA, et al.. Comparison of lead-free and conventional x-ray aprons for diagnostic radiology. In: World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009; 2009; Munich, Germany; Springer, Berlin, Heidelberg. 544–546.
  • McCaffrey JP, Shen H, Downton B, Mainegra‐Hing E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med Phys. 2007;34(2):530–537. doi:10.1118/1.2426404
  • Aghaz A, Faghihi R, Mortazavi S, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range. Int J Radiat Res. 2016;14(2):127. doi:10.18869/acadpub.ijrr.14.2.127
  • Botelho MZ, Künzel R, Okuno E, Levenhagen RS, Basegio T, Bergmann CP. X-ray transmission through nanostructured and microstructured CuO materials. Appl Radiat Isot. 2011;69(2):527–530. doi:10.1016/j.apradiso.2010.11.002
  • Cho JH, Kim MS, Rhim JD. Comparison of radiation shielding ratios of nano-sized bismuth trioxide and molybdenum. Radiat Effe Defects Solids. 2015;170(7–8):651–658. doi:10.1080/10420150.2015.1080703
  • Stam W, Pillay M. Inspection of lead aprons: a practical rejection model. Health Phys. 2008;95(2):S133–S136. doi:10.1097/01.HP.0000314763.19226.86
  • Stahl CM, Meisinger QC, Andre MP, Kinney TB, Newton IG. Radiation risk to the fluoroscopy operator and staff. Am J Roentgenol. 2016;207(4):737–744. doi:10.2214/AJR.16.16555
  • Burns KM, Shoag JM, Kahlon SS, et al. Lead aprons are a lead exposure hazard. J Am Coll Radiol. 2017;14(5):641–647. doi:10.1016/j.jacr.2016.10.024
  • Ang L, Almasoud A, Palakodeti S, Mahmud E. Bacterial contamination of lead aprons in a high-volume cardiac catheterization laboratory and disinfection using an automated ultraviolet-c radiation system. J Invasive Cardiol. 2018;30:416–420.
  • McAleese T, Broderick JM, Stanley E, Curran R. Thyroid radiation shields: a potential source of intraoperative infection. J Orthopaedics. 2020;22:300–303. doi:10.1016/j.jor.2020.06.010