139
Views
0
CrossRef citations to date
0
Altmetric
Review

Crosstalk between nitric oxide and hypoxia-inducible factor signaling pathways: an update

&
Pages 147-161 | Published online: 18 Jun 2015

References

  • Semenza G, Wang G. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447.
  • Wang G, Jiang B, Rue E, Semenza G. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510–5514.
  • Takahata S, Sogawa K, Kobayashi A, et al. Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Biochem Biophys Res Commun. 1998;248:789–794.
  • Sena J, Wang L, Heasley L, Hu C. Hypoxia regulates alternative splicing of HIF and non-HIF target genes. Mol Cancer Res. 2014;12(9):1233–1243.
  • Makino Y, Kanopka A, Wilson W, Tanaka H, Poellinger L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J Biol Chem. 2002;277(36):32405–32408.
  • Maltepe E, Keith B, Arsham A, Brorson J, Simon M. The role of ARNT2 in tumor angiogenesis and the neural response to hypoxia. Biochem Biophys Res Commun. 2000;273:231–238.
  • Ruas J, Poellinger L, Pereira T. Functional Analysis of Hypoxia-inducible Factor-1α-mediated transactivation: identification of amino acid residues critical for transcriptional activation and/or interaction with Creb-binding protein. J Biol Chem. 2002;277:38723–38730.
  • Kewley R, Whitelaw M, Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol. 2004;36:189–204.
  • Wiesener M, Jürgensen J, Rosenberger C, et al. Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J. 2003;17:271–273.
  • Prabhakar N, Semenza G. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012;92:967–1003.
  • Ikeda M, Nomura M. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun. 1997;233:258–264.
  • Mole D, Blancher C, Copley R, et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 2009;284(25):16767–16775.
  • Semenza G. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51–56.
  • Scortegagna M, Ding K, Zhang Q, et al. HIF-2α regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood. 2005;105:3133–3140.
  • Ratcliffe P. HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest. 2007;117:862–865.
  • Makino Y, Cao R, Svensson K, et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 2001;414(6863):550–554.
  • Jaakkola P, Mole D, Tian Y, et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–472.
  • Maxwell P, Wiesener M, Chang G, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–275.
  • Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia. EMBO J. 2003;22:4082–4090.
  • Paltoglou S, Roberts B. HIF-1α and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases. Oncogene. 2006;26:604–609.
  • Lando D, Peet D, Whelan D, Gorman J, Whitelaw M. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science. 2002;295(5556):858–861.
  • Zhang N, Fu Z, Linke S, et al. The asparaginyl hydroxylase factor inhibiting HIF-1α is an essential regulator of metabolism. Cell Metab. 2010;11:364–378.
  • Masson N, Singleton R, Sekirnik R, et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 2012;13:251–257.
  • Semenza G. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123:3664–3671.
  • Schödel J, Oikonomopoulos S, Ragoussis J, Pugh C, Ratcliffe P, Mole D. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011;117(23):207–217.
  • Carroll V, Ashcroft M. Role of hypoxia-inducible factor (HIF)-1α versus HIF-2α in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res. 2006;66:6264–6270.
  • Jung F, Palmer L, Zhou N, Johns R. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res. 2000;86:319–325.
  • Kim J, Tchernyshyov I, Semenza G, Dang C. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177185.
  • Huang D, Li T, Li X, et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 2014;25(8):1930–1942.
  • Zhang H, Bosch-Marce M, Shimoda L, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892–10903.
  • Jiang B, Agani F, Passaniti A, Semenza G. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 1997;57(23):5328–5335.
  • Eliceiri B, Paul R, Schwartzberg P, Hood J, Leng J, Cheresh D. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell. 1999;4:915–924.
  • Mukhopadhyay D, Tsiokas L, Zhou X, Foster D, Brugge J, Sukhatme V. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature. 1995;375(6532):577–581.
  • Gray M, Zhang J, Ellis L, et al. HIF-1α, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene. 2005;24:3110–3120.
  • Moncada S, Palmer R, Higgs E. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–142.
  • Ball K, Nelson A, Foster D, Poyton R. Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1α in hypoxic mammalian cells. Biochem Biophys Res Commun. 2012;420:727–732.
  • Poyton R, Ball K, Castello P. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009;20:332–340.
  • Benhar M, Stamler J. A central role for S-nitrosylation in apoptosis. Nat Cell Biol. 2005;7:645–646.
  • Castello P, David P, McClure T, Crook Z, Poyton R. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 2006;3:277–287.
  • Fang F. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;2:820–832.
  • Liu L, Yan Y, Zeng M, et al. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell. 2004;116:617–628.
  • Hara M, Agrawal N, Kim S, et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol. 2005;7:665–674.
  • Alderton W, Cooper C, Knowles R. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593.
  • Zweier J, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995;1:804–809.
  • van Faassen E, Bahrami S, Feelisch M, et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev. 2009;29:683–741.
  • Vitturi D, Patel R. Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy. Free Radical Biol Med. 2011;51:805–812.
  • Poyton R, Ball K. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome C oxidase. Discov Med. 2011;11:154–159.
  • Hematian S, Siegler M, Karlin K. Heme/copper assembly mediated nitrite and nitric oxide interconversion. J Am Chem Soc. 2012;134:18912–18915.
  • Ball K, Castello P, Poyton R. Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: implications for phototherapy. J Photochem Photobiol B. 2011;102:182–191.
  • Li B, Skinner C, Castello P, et al. Identification of potential calorie restriction-mimicking yeast mutants with increased mitochondrial respiratory chain and nitric oxide levels. J Aging Res. 2011;2011:1–16.
  • Poyton R, Castello P, Ball K, Woo D, Pan N. Mitochondrial nitrite-dependent NO production and hypoxic signaling. Ann N Y Acad Sci. 2009;1177:48–56.
  • Alzawahra W, Talukder M, Liu X, Samouilov A, Zweier J. Heme proteins mediate the conversion of nitrite to nitric oxide in the vascular wall. Am J Physiol Heart Circ Physiol. 2008;295:H499–H508.
  • Tsikas D, Böger R, Sandmann J, Bode-Böger S, Frölich J. Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett. 2000;478:1–3.
  • Castello P, Woo D, Ball K, Wojcik J, Liu L, Poyton R. Oxygen-regulated isoforms of cytochrome c oxidase have differential effects on its nitric oxide production and on hypoxic signaling. Proc Natl Acad Sci U S A. 2008;105:8203–8208.
  • Burke P, Poyton R. Structure/function of oxygen-regulated isoforms in cytochrome c oxidase. J Exp Biol. 1998;201:1163–1175.
  • Ray P, Huang B, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–990.
  • Schieber M, Chandel N. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–R462.
  • Finkel T. Signal transductants by mitochondrial oxidants. J Biol Chem. 2012;297:4434–4440.
  • Chua Y, Dufour E, Dassa E, et al. Stabilization of hypoxia-inducible factor-1 protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem. 2010;285:31277–31284.
  • Hoffman D, Brookes P. Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic Conditions. J Biol Chem. 2009;284:16236–16245.
  • Chowdhury R, Godoy L, Thiantanawat A, Trudel L, Deen W, Wogan G. Nitric oxide produced endogenously is responsible for hypoxia-induced HIF-1α stabilization in colon carcinoma cells. Chem Res Toxicol. 2012;25:2194–2202.
  • Huang L, Willmore W, Gu J, Goldberg M, Bunn H. Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide: implications for oxygen sensing and signaling. J Biol Chem. 1999;274:9038–9044.
  • Sogawa K, Numayama-Tsuruta K, Ema M, Abe M, Abe H, Fujii-Kuriyama Y. Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci U S A. 1998;95:7368–7373.
  • Sandau K. Accumulation of HIF-1α under the influence of nitric oxide. Blood. 2001;97:1009–1015.
  • Caneba C, Yang L, Baddour J, et al. Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells. Cell Death Dis. 2014;5:e1302.
  • Kuwabara M, Kakinuma Y, Ando M, et al. Nitric oxide stimulates vascular endothelial growth factor production in cardiomyocytes involved in angiogenesis. Jpn J Physiol. 2006;56:95–101.
  • Sharifpanah F, Saliu F, Bekhite M, Wartenberg M, Sauer H. β-adrenergic receptor antagonists inhibit vasculogenesis of embryonic stem cells by downregulation of nitric oxide generation and interference with VEGF signaling. Cell Tissue Res. 2014;358:443–452.
  • Berchner-Pfannschmidt U, Tug S, Kirsch M, Fandrey J. Oxygen-sensing under the influence of nitric oxide. Cell Signal. 2010;22:349–356.
  • Li F, Sonveaux P, Rabbani Z, et al. Regulation of HIF-1α stability through S-nitrosylation. Mol Cell. 2007;26:63–74.
  • Yasinska I, Sumbayev V. S-nitrosation of Cys-800 of HIF-1α protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett. 2003;549:105–109.
  • Cho H, Ahn D, Park H, Yang E. Modulation of p300 binding by posttranslational modifications of the C-terminal activation domain of hypoxia-inducible factor-1α. FEBS Lett. 2007;581:1542–1548.
  • Chowdhury R, Flashman E, Mecinovic J, et al. Studies on the reaction of nitric oxide with the hypoxia-inducible factor prolyl hydroxylase domain 2 (EGLN1). J Mol Biol. 2011;410:268–279.
  • Park Y, Ahn D, Oh M, et al. Nitric oxide donor, (±)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1 by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation. Mol Pharmacol. 2008;74:236–245.
  • Palmer L, Doctor A, Chhabra P, et al. S-nitrosothiols signal hypoxia-mimetic vascular pathology. J Clin Invest. 2007;117:2592–2601.
  • Liu H, Yu S, Zhang H, Xu J. Identification of nitric oxide as an endogenous inhibitor of 26S proteasomes in vascular endothelial cells. PLoS One. 2014;9:e98486.
  • Castellano E, Downward J. RAS interaction with PI3K: more than just another effector pathway. Genes Cancer. 2011;2:261–274.
  • Hudson C, Liu M, Chiang G, et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22:7004–7014.
  • Zhou J. PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1 from pVHL-independent degradation. J Biol Chem. 2004;279:13506–13513.
  • Zeiher A, Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–605.
  • Datta K, Li J, Bhattacharya R, Gasparian L, Wang E, Mukhopadhyay D. Protein kinase c transactivates hypoxia-inducible factor by promoting its association with p300 in renal cancer. Cancer Res. 2004;64:456–462.
  • Geng H, Liu Q, Xue C, et al. HIF1 protein stability is increased by acetylation at lysine 709. J Biol Chem. 2012;287:35496–35505.
  • Arif M, Vedamurthy B, Choudhari R, et al. Nitric oxide-mediated histone hyperacetylation in oral cancer: target for a water-soluble HAT inhibitor, CTK7A. Chem Biol. 2010;17:903–913.
  • Kornberg M, Sen N, Hara M, et al. GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol. 2010;12:1094–1100.
  • Lim J, Lee Y, Chun Y, Chen J, Kim J, Park J. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell. 2010;38:864–878.
  • Laemmle A, Lechleiter A, Roh V, et al. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions. PLoS One. 2012;7:e33433.
  • Mylonis I, Chachami G, Samiotaki M, et al. Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1. J Biol Chem. 2006;281:33095–33106.
  • Callsen D, Pfeilschifter J, Brüne B. Rapid and delayed p42/p44 mitogen-activated protein kinase activation by nitric oxide: the role of cyclic GMP and tyrosine phosphatase inhibition. J Immunol. 1998;161:4852–4858.
  • Fukuda R, Zhang H, Kim J, Shimoda L, Dang C, Semenza G. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129:111–122.
  • Iyer N, Kotch L, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1alpha. Genes Dev. 1998;12:149–162.
  • Simon M, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 2008;9:285–296.
  • Mustafa R, Ahmed S, Gupta A, Venuto R. A comprehensive review of hypertension in pregnancy. J Pregnancy. 2012;2012:1–19.
  • Cowburn A, Alexander L, Southwood M, Nizet V, Chilvers E, Johnson R. Epidermal deletion of HIF-2a stimulates wound closure. J Invest Dermatol. 2014;134:801–808.
  • Luo J, Chen A. Nitric oxide: a newly discovered function on wound healing. Acta Pharmacol Sin. 2005;26:259–264.
  • Yang L, Guo X, Du C, et al. Interleukin-1 beta increases activity of human endothelial progenitor cells: involvement of PI3K-Akt signaling pathway. Inflammation. 2012;35:1242–1250.
  • Akama K, Van Eldik L. β-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta – and tumor necrosis factor-alpha (TNFα)-dependent, and involves a TNFα receptor-associated factor- and NFκ B-inducing kinase-dependent signaling mechanism. J Biol Chem. 2000;275:7918–7924.
  • Johnson M, Grazul-Bilska A, Redmer D, Reynolds L. Effects of estradiol-17β on expression of mRNA for seven angiogenic factors and their receptors in the endometrium of ovariectomized (OVX) ewes. Endocrinology. 2006;30:333–342.
  • Reynolds L, Grazul-Bilska A, Redmer D. Angiogenesis in the female reproductive organs: pathological implications. Int J Exp Pathol. 2002;83:151–164.
  • Stirone C. Estrogen receptor activation of phosphoinositide-3 kinase, Akt, and nitric oxide signaling in cerebral blood vessels: rapid and long-term effects. Mol Pharmacol. 2005;67:105–113.
  • Hirota K, Fukuda R, Takabuchi S, et al. Induction of hypoxia-inducible factor 1 activity by muscarinic acetylcholine receptor signaling. J Biol Chem. 2004;279:41521–41528.
  • Wei H, Bedja D, Koitabashi N, et al. Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-signaling. Proc Natl Acad Sci U S A. 2012;109:E841–E850.
  • Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446:444–448.
  • Cheng S, Quintin J, Cramer R, et al. mTOR-and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345:1250684.
  • Peyssonnaux C, Datta V, Cramer T, et al. HIF-1α expression regulates the bactericidal capacity of phagocytes. J Clin Invest. 2005;115:1806–1815.
  • Elks P, Brizee S, van der Vaart M, et al. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog. 2013;9:e1003789.
  • Herbst S, Schaible U, Schneider B. Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS One. 2011;6:e19105.
  • Guo K, Searfoss G, Krolikowski D, et al. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ. 2001;8:367–376.
  • Zamora R, Vodovotz Y, Betten B, et al. Intestinal and hepatic expression of BNIP3 in necrotizing enterocolitis: regulation by nitric oxide and peroxynitrite. Am J Physiol Gastrointest Liver Physiol. 2005;289:G822–G830.
  • Jawahir M, Nicholas S, Coughlan K, Sumbayev V. Apoptosis signal-regulating kinase 1 (ASK1) and HIF-1α protein are essential factors for nitric oxide-dependent accumulation of p53 in THP-1 human myeloid macrophages. Apoptosis. 2008;13:1410–1416.
  • Hess D, Matsumoto A, Kim S, Marshall H, Stamler J. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005;6:150–166.
  • Keswani S, Bosch-Marce M, Reed N, Fischer A, Semenza G, Hoke A. Nitric oxide prevents axonal degeneration by inducing HIF-1-dependent expression of erythropoietin. Proc Natl Acad Sci U S A. 2011;108:4986–4990.
  • Hortelano S, Traves P, Zeini M, Alvarez A, Bosca L. Sustained nitric oxide delivery delays nitric oxide-dependent apoptosis in macrophages: contribution to the physiological function of activated macrophages. J Immunol. 2003;171:6059–6064.
  • Brüne B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 2003;10:864–869.
  • Pacher P, Beckman J, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.
  • Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–2581.
  • Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta. 2010;1797:1171–1177.
  • Gomes A, Price N, Ling A, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155:1624–1638.
  • Zhang H, Gao P, Fukuda R, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007;11:407–420.
  • Zhang Y, Shao Z, Zhai Z, Shen C, Powell-Coffman J. The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS One. 2009;4:e6348.
  • Chen D, Thomas E, Kapahi P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet. 2009;5:e1000486.
  • Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310:314–317.
  • Gusarov I, Smolentseva O, Gautier L, Nudler E. Nitric oxide produced by bacteria extends Caenorhabditis elegans lifespan. Nitric Oxide. 2012;27:S46–S50.
  • Bagnall J, Leedale J, Taylor S, et al. Tight control of hypoxia-inducible factor-transient dynamics is essential for cell survival in hypoxia. J Biol Chem. 2014;289:5549–5564.
  • Poulsen R, Knowles H, Carr A, Hulley P. Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell Death Dis. 2014;5:e1074.
  • Bergers G, Benjamin L. Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–410.
  • Ambs S, Merriam W, Bennett W, et al. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 1998;58:334–341.
  • Loibl S, von Minckwitz G, Weber S, et al. Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer. 2002;95:1191–1198.
  • Koshiji M, Kageyama Y, Pete E, Horikawa I, Barrett J, Huang L. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J. 2004;23:1949–1956.
  • Krick S, Eul B, Hänze J, et al. Role of hypoxia-inducible factor-1α in hypoxia-induced apoptosis of primary alveolar epithelial type II cells. Am J Respir Cell Mol Biol. 2005;32:395–403.
  • Ciani E, Severi S, Contestabile A, Bartesaghi R, Contestabile A. Nitric oxide negatively regulates proliferation and promotes neuronal differentiation through N-Myc downregulation. J Cell Sci. 2004;117:4727–4737.
  • Raval R, Lau K, Tran M, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25:5675–5686.
  • Chiavarina B, Whitaker-Menezes D, Migneco G, et al. HIF1-alpha functions as a tumor promoter in cancer-associated fibroblasts, and as a tumor suppressor in breast cancer cells. Cell Cycle. 2010;9:3534–3551.
  • Capparelli C, Whitaker-Menezes D, Guido C, et al. CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle. 2012;11:2272–2284.
  • Soussi T, Wiman K. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007;12:303–312.
  • Amaravadi R. Autophagy-induced tumor dormancy in ovarian cancer. J Clin Invest. 2008;118(12):3837–3840.
  • Zhou Y, Sun K, Ma Y, et al. Autophagy inhibits chemotherapy-induced apoptosis through downregulating Bad and Bim in hepatocellular carcinoma cells. Sci Rep. 2014;4:5382.
  • Bai X, Zhi X, Zhang Q, et al. Inhibition of protein phosphatase 2A sensitizes pancreatic cancer to chemotherapy by increasing drug perfusion via HIF-1α-VEGF mediated angiogenesis. Cancer Lett. 2014;355:281–287.
  • Blouw B, Song H, Tihan T, et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 2003;4:133–146.
  • Esposito L, Raber J, Kekonius L, et al. Reduction in mitochondrial superoxide dismutase modulates alzheimer’s disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J Neurosci. 2006;26:5167–5179.
  • Pan W, Kastin A. Can sleep apnea cause Alzheimer’s disease? Neurosci Biobehav Rev. 2014;47:656–669.
  • Zhang X, Zhou K, Wang R, et al. Hypoxia-inducible Factor 1(HIF-1)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem. 2007;282:10873–10880.
  • Vlassenko A, Raichle M. Brain aerobic glycolysis functions and Alzheimer’s disease. Clin Transl Imaging. 2015;3:27–37.
  • Brix B, Mesters J, Pellerin L, Johren O. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1-mediated target gene activation. J Neurosci. 2012;32:9727–9735.
  • Newington J, Harris R, Cumming R. Reevaluating metabolism in Alzheimer’s disease from the perspective of the astrocyte-neuron lactate shuttle model. J Neurodegener Dis. 2013;2013:1–13.
  • Soucek T, Cumming R, Dargusch R, Maher P, Schubert D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron. 2003;39:43–56.
  • Miller G, Tennille P, Morgan A, et al. Acute effect of a high nitrate diet on brain perfusion in older adults. Nitric Oxide. 2011;24:S28.
  • Näpänkangas J, Liimatta E, Joensuu P, Bergmann U, Ylitalo K, Hassinen I. Superoxide production during ischemia–reperfusion in the perfused rat heart: a comparison of two methods of measurement. J Mol Cell Cardiol. 2012;53:906–915.
  • Halkos M, Kerendi F, Corvera J, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg. 2004;78:961–969.
  • Gulati P, Singh N. Evolving possible link between PI3K and NO pathways in neuroprotective mechanism of ischemic postconditioning in mice. Mol Cell Biochem. 2014;397:255–265.
  • Mahfoudh-Boussaid A, Zaouali M, Hadj-Ayed K, et al. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1α in ischemic kidney: the role of nitric oxide. J Biomed Sci. 2012;19:7.
  • Cai Z, Zhong H, Bosch-Marce M, et al. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1. Cardiovasc Res. 2007;77:463–470.
  • Semenza G. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochin Biophys Acta. 2011;1813:1263–1268.
  • Witte M, Thornton F, Tantry U, Barbul A. l-arginine supplementation enhances diabetic wound healing: Involvement of the nitric oxide synthase and arginase pathways. Metabolism. 2002;51:1269–1273.
  • Bin-Jaliah I, El-Attar S, Khaleel E, El-Sayed L, Haidara M. Remedial effects of vitamin E and L-arginine on peripheral neuropathy in streptozotocin-induced diabetic rats. Am J Pharmacol Toxicol. 2014;9:13–23.
  • Simo R, Sundstrom J, Antonetti D. Ocular anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care. 2014;37:893–899.
  • Olson E, Demopoulos L, Haws T, et al. Short-term treatment with a novel HIF-prolyl hydroxylase inhibitor (GSK1278863) failed to improve measures of performance in subjects with claudication-limited peripheral artery disease. Vasc Med. 2014;19:473–482.
  • Reischl S, Li L, Walkinshaw G, Flippin L, Marti H, Kunze R. Inhibition of HIF prolyl-4-hydroxylases by FG-4497 reduces brain tissue injury and edema formation during ischemic Stroke. PLoS One. 2014;9:e84767.
  • Karuppagounder S, Ratan R. Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics? J Cereb Blood Flow Metab. 2012;32:1347–1361.
  • Casanovas O, Hicklin D, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.
  • Keunen O, Johansson M, Oudin A, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108:3749–3754.
  • Benita Y, Kikuchi H, Smith A, Zhang M, Chung D, Xavier R. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res. 2009;37:4587–4602.
  • Gerber H, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes: Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem. 1997;272:23659–23667.
  • Semenza G. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–732.
  • Bergeron M, Yu A, Solway K, Semenza G, Sharp F. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. European J Neurosci. 1999;11:4159–4170.
  • Yang Z, Zou A. Transcriptional regulation of heme oxygenases by HIF-1α in renal medullary interstitial cells. Am J Physiol Renal Physiol. 2001;281:F900–F908.
  • Jeong J, Bae M, Ahn M, et al. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell. 2002;111:709–720.
  • Pan Y, Mansfield K, Bertozzi C, et al. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol. 2007;27(3):912–925.
  • Caito S, Rajendrasozhan S, Cook S, et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J. 2010;24(9):3145–3159.
  • Tyther R, McDonagh B, Sheehan D. Proteomics in investigation of protein nitration in kidney disease: Technical challenges and perspective from the sponaneously hypertensive rat. Mass Spectrom Rev. 2011;30(1):121–141.
  • Shi Q, Xu H, Yu H, et al. Inactivation and reactivation of the mitochondrial -ketoglutarate dehydrogenase complex. J Biol Chem. 2011;286(20):17640–17648.