10
Views
0
CrossRef citations to date
0
Altmetric
Review

Predicting response to incretin-based therapy

, , &
Pages 11-19 | Published online: 07 Apr 2011

References

  • Creutzfeldt W. The incretin concept today. Diabetologia. 1979;16:75–85.
  • Ebrick H, Stimmler L, Hlad CJ, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24:1076–1082.
  • Tillil H, Shapiro ET, Miller MA, et al. Dose-dependent effects of oral and intravenous glucose on insulin secretion and clearance in normal humans. Am J Physiol. 1988;254:E349-E357.
  • Nauk MA, Homberger E, Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63:492–498.
  • Tseng CC, Kieffer TJ, Jarboe LA, et al. Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest. 1996;98:2440–2245.
  • Kolligs F, Fehmann HC, Goke R, Goke B. Reduction of the incretin effect in rats by the glucagons-like peptide 1 receptor antagonist exendin (9–39)amide. Diabetes. 1995;44:16–19.
  • Scrocchi LA, Brown TJ, MaClusky N, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med. 1996;2:1254–1258.
  • Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1. 7–36: a physiological incretin in man. Lancet. 1987;2:1300–1304.
  • Orksov C, Wettergren A, Hoist JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol. 1996;31:665–670.
  • Vilsboll T, Krarup T, Madsbad S, Holst JJ. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept. 2003;114:115–121.
  • Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology. 2002;122:531–544.
  • Kalra S, Kalra B, Sharma A. Liraglutide - a novel GLP-1 analogue. Recent Patents on Endocrine, Metabolic and Immune Drug Discovery. 2009;3(3):200–204.
  • Moretto TJ, Milton DR, Ridge TD, MacConell LA, Okersen T, Wolka AM, et al. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2008;30:1448–1460.
  • Kim T, Taylor K, Wilhelm K, et al. Exenatide once weekly treatment elicits sustained glycemic control and weight loss over 2 years. Abstract 159-OR. Diabetes. 2009;58(Suppl 1):A42.
  • Raz I, Hanefeld M, Xu L, Caria C, Williams Herman D, Khatami H. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes. Diabetes Care. 2006;49:2564–2571.
  • Buse JB, Rosenstock J, Sesti G, et al; for LEAD-6 Study Group. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet. 2009;374:39–47.
  • Pratley RE, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetty S, et al; for the 1860 LIRA DPP 4 Study Group. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycae- mic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet. 2010;375:1447–1456.
  • Garber A, Henry R, Ratner R, Garcia-Hernandez PA, Rodriguez-Pattzi H, Olvera-Alvarez I, et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet. 2009;373:473–481.
  • Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. Clin Invest. 1987;79:616–619.
  • Flamez D, Gilon P, Moens K, et al. Altered cAMP and Ca2+ signaling in mouse pancreatic islets with glucagon-like peptide-1 receptor null phenotype. Diabetes. 1999;48:1979–1986.
  • Dyachok O, Isakov Y, Sagetorp J, Tengholm A. Oscillations of cyclic AMP in hormone-stimulated insulin-secreting β-cells. Nature. 2006;439:349–352.
  • Serre V Dolci W, Schaerer E, et al. Exendin-(9–39) is an inverse agonist of the murine glucagon-like peptide-1 receptor: implications for basal intracellular cyclic adenosine 3′,5′-monophosphate levels and beta-cell glucose competence. Endocrinology. 1998;139:4448–4454.
  • Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia. 1999;42:856–864.
  • Kang G, Chepurny OG, Holz GG. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J Physiol. 2001;536:375–385.
  • Wang Y, Egan JM, Raygada M, Nadiv O, Roth J, Montrose-Rafizadeh C. Glucagon-like peptide-1 affects gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046–38 cells. Endocrinology. 1995;136:4910–4917.
  • Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-I (7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology. 1992;130:159–166.
  • Skoglund G, Hussain MA, Holz GG. Glucagon-like peptide 1 stimulates insulin gene promoter activity by protein kinase A-independent activation of the rat insulin I gene cAMP response element. Diabetes. 2000;49:1156–1164.
  • Kemp DM, Habener JF. Insulinotropic hormone glucagon-like peptide 1 (GLP-1) activation of insulin gene promoter inhibited by p38 mitogen- activated protein kinase. Endocrinology. 2001;142:1179–1187.
  • Pugazhenthi U, Velmurugan K, Tran A, Mahaffey G, Pugazhenthi S. Anti-inflammatory action of exendin-4 in human islets is enhanced by phosphodiesterase inhibitors: potential therapeutic benefits in diabetic patients. Diabetologia. 2010;53:2357–2368.
  • Holz GG 4th, Kühtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagonlike peptide-1 (7–37). Nature. 1993;361:362–365.
  • Dachicourt N, Serradas P, Bailbé D, Kergoat M, Doaré L, Portha B. Glucagon-like peptide-1 (7–36)-amide confers glucose sensitivity to previously glucose-incompetent beta-cells in diabetic rats: in vivo and in vitro studies. J Endocrinol. 1997;155:369–376.
  • Stumvoll M, Fritsche A, Stefan N, Hardt E, Häring H. Evidence against a rate-limiting role of proinsulin processing for maximal insulin secretion in subjects with impaired glucose tolerance and beta-cell dysfunction. J Clin Endocrinol Metab. 2001;86:1235–1239.
  • DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med. 2000;133:73–74.
  • Ranganath LR, Beety JM, Morgan LM, et al. Attenuated GLP-1 secretion in obesity: cause or consequence. Gut. 1996;38:916–919.
  • Nauck M, Stockmann F, Ebert R, et al. Reduced incretin effect in type 2 (non-insulindependent) diabetes. Diabetologia. 1986;29:46–52.
  • Nauck MA, Baller B, Meier JJ. Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes. Diabetes. 2004;53:S190-S196.
  • Fehmann HC, Goke R, Goke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulin releasing polypeptide. Endocr Rev. 1995;16:390–410.
  • Mannucci E, Ognibene A, Cremasco F, et al. Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with type 2 diabetes mellitus. Diabetes Med. 2000;17:713–719.
  • Henderson JR, Jefferys DB, Jones RH, Stanley D. The effect of atropine in the insulin release caused by oral and intravenous glucose in human subjects. Acta Endocrinol (Copenh). 1976;83:772–780.
  • Flaten O, Sand T, Myren J. Beta-adrenergic stimulation and blockade of the release of gastric inhibitory polypeptide and insulin in man. Scand J Gastroenterol. 1982;17:283–288.
  • Chap Z, Okuda Y, Pena J, Field JB. Beta-adrenergic stimulation contributes to incretin effect in conscious dogs. Am J Physiol. 1991;261:E58-E65.
  • Ikeda T, Ochi H, Ohtani I, et al. Possible role of the adrenergic mechanism in gastric inhibitory polypeptide- and glucagon-like-peptide-1 (7–36) amide-induced insulin release in the rat. Metabolism. 1993;42:209–213.
  • Kazakos KA, Sarafidis PA, Yavos JG. The impact of diabetic autonomic neuropathy on the incretin effect. Med Sci Monit. 2008:14:CR213–220.23.
  • Horwitz DL, Starr JI, Mako ME, et al. Proinsulin, insulin and C-Peptide concentrations in human portal and peripheral blood. J Clin Invest. 1975;55:1278–1283.
  • Levitt NS, Vinik AI, Child PT. Glucose dependent maturity-onset diabetes: effects of autonomic neuropathy. J Clin Endocrinol Metab. 1980;51:254–258.
  • Wettergren A, Wojdemann M, Meisner S, Stadil F, Holst JJ. The inhibitory effect of glucagons-like peptide-1(GLP-1)7–36 amide on gastric acid secretion in humans depends on an intact vagal innervation. Gut. 1997;40:597–601.
  • Wettergen A, Wojdermann M, Holst JJ. Glucagon-like peptide-1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am J Physiol. 1998:275:G984-G992.
  • Hansotia T, Maida A, Flock G, et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J Clin Invest. 2007;117:143–152.
  • Pannacciulli N, Bunt JC, Koska J, Bogardus C, Krakoff J. Higher fasting plasma concentrations of glucagon like peptide 1 are associated with higher resting energy expenditure and fat oxidation rates in humans. Am J Clin Nutr. 2006;84:556–560.
  • Donahoo WT, Levine JA, Melanson EL. Variability in energy expenditure and its components. Curr Opin Clin Nutr Metab Care. 2004;7:599–605.
  • Yamamoto H, Lee CE, Marcus JN, Williams TD, Overten JM, Lopez ME, et al. Glucagon like peptide 1 receptor stimulation increases bloodpressure and heart rate and activates autonomic regulatory neurons. J Clin Invest. 2002;110:43–52.
  • Pannaaci N, de Courteen B, Brookshire TL, Del Parigi A, Holst JJ, Tataranni PA. GLP-1 response to a mixed meal is associated with SNS activity in humans: a microneurography analysis. Obes Res. 2005;13:A107(abstr).
  • Schwartz TW, Holst JJ, Fahrenkrug J, et al. Vagal, cholinergic regulation of pancreatic polypeptide secretion. J Clin Invest. 1978;61:781–789.
  • Meier JJ, Gallwitz B, Askenas M, et al. Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide (GIP) in women with a history of gestational diabetes. Diabetologia. 2005;48:1872–1881.
  • Nauk MA, EI Ouaghlidi A, Gabrys B, Hucking K, Holst JJ, Deacon CF, et al. Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes. Regul Peptides. 2004;122:209–217.
  • Vollmer K, Holst JJ, Baller B, Ellrichmann M, Nauck MA, Schmidt WE, et al. Predictors of incretin concentrations in subjects with normal impaired, and diabetic glucose tolerance. Diabetes. 2008;57:678–687.
  • Toft-Nelsen MB, Madsbad S, Holst JJ. Determinants of effectiveness of glucagon like peptide-1 in type 2 diabetes. J Clin Endocrinol Metab. 2001;86:3853–3860.
  • Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendine-4 stimulates both beta-cell replication and neogenesis, resulting in increased betacell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48:2270–2276.
  • Zhou J, Wang X, Pineyro MA, Egan JM. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42j cells into glucagon- and insulin- producing cells. Diabetes. 1999;48:2358–2366.
  • Orskov C, Hoist JJ, Neisen OV. Effect of truncated glucagon-like peptide-1 [proglucagon (78–107) amide] on endocrine secretion from pig pancreas, antrum, and noantral stomach. Endocrinology. 1988;123:2009–2013.
  • Nauk MA, Kleine N, Orskov C, Hoist JJ, Willms B, Creutzfeldt W. Normalization of fasting hyperglycemia by exogenous glucagon-like peptide 2 stimulates glucagon secretion enhances lipid absorption, and inhibits gastric acid secretion in humans. Diabetologia. 1993;36:741–744.
  • Meier JJ, Nauk MA, Pott A, Hienze K, Goetze O, Bulut K, et al. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology. 2006;130:44–54.
  • Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–323.
  • Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, et al. TCF7 L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med. 2007;85:777–782.
  • Villareal DT, Robertson H, Bell GI, Patterson DW, Tran H, Wise B, et al. TCF7L2 variant rs7903146 affects the risk of type 2 diabetes by modulating incretin action. Diabetes. 2010;59:479–485.
  • Jin T, Liu L. The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol. 2008;22:2383–2392.
  • Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117:2155–2163.
  • Shu L, Matveyenko AV, Kerr-Conte J, Cho JH, McIntosh CH, Maedler K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet. 2009;18:2388–2399.