290
Views
4
CrossRef citations to date
0
Altmetric
Review

Apnea of prematurity: challenges and solutions

, &
Pages 101-109 | Published online: 19 Jun 2014

References

  • Finer NN, Higgins R, Kattwinkel J, Martin RJ. Summary proceedings from the apnea of prematurity group. Pediatrics. 2006;117:S47–S51.
  • Henderson-Smart DJ. The effect of gestational age on the incidence and duration of recurrent apnea in newborn babies. J Paediatr. 1981;17:273–276.
  • Poets CF. Apnea of prematurity: what can observational studies tell us about pathophysiology? Sleep Med. 2010;11:701–707.
  • Martin RJ, Abu Shaweesh JM, Baird TM. Apnoea of prematurity. Paediatr Respir Rev. 2004;5 Suppl 1:S377–S382.
  • Robertson CM, Watt MJ, Dinu IA. Outcomes for the extremely premature infant: what is new? And where are we going? Pediatr Neurol. 2009;40:189–196.
  • Finer NN, Barrington KJ, Hayes BJ, Hugh A. Obstructive, mixed and central apnea in the neonate: physiologic correlates. J Pediatr. 1992;121:943–950.
  • Al-Sufayan F, Bamehrez M, Kwiatkowski K, Alvaro RE. The effects of airway closure in central apneas and obstructed respiratory efforts in mixed apneas in preterm infants. Pediatr Pulmonol. 2009;44:253–259.
  • Milner AD, Boon AW, Saunders RA, Hopkin IE. Upper airways obstruction and apnoea in preterm babies. Arch Dis Child. 1980;55:22–25.
  • Upton CJ, Milner AD, Stokes GM. Upper airway patency during apnoea of prematurity. Arch Dis Child. 1992;67:419–424.
  • Thach BT. Maturation of cough and other reflexes that protect the fetal and neonatal airway. Pulm Pharmacol Ther. 2007;20:365–370.
  • Sankaran K, Leahy FN, Cates D, MacCallum M, Rigatto H. Effect of lung inflation on ventilation and various phases of the respiratory cycle in preterm infants. Biol Neonate. 1981;40:160–166.
  • Dawes GS. The central control of fetal breathing and skeletal muscle movements. J Physiol. 1984;346:1–18.
  • Bissonnette JM, Hohimer AR, Knopp SJ. Effect of hypoxia on expiratory muscle activity in fetal sheep. Respir Physiol Neurobiol. 2010;171:110–114.
  • Blanco CE, Dawes GS, Hanson MA, McCooke HB. The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J Physiol. 1984;351:25–37.
  • Darnall RA. The role of CO2 and central chemoreception in the control of breathing in the fetus and the neonate. Respir Physiol Neurobiol. 2010;173:201–212.
  • Gauda EB, McLemore GL, Tolosa J, Marston-Nelson J, Kwak D. Maturation of peripheral arterial chemoreceptors in relation to neonatal apnoea. Semin Neonatol. 2004;9:181–194.
  • Martin RJ, Abu-Shaweesh JM. Control of breathing and neonatal apnea. Biol Neonate. 2005;87:288–295.
  • Angell-James JE, Daly M. Cardiovascular responses in apnoeic asphyxia: role of arterial chemoreceptors and the modification of their effects by a pulmonary vagal inflation reflex. J Physiol. 1969;201:87–104.
  • Heldt GP. Development of stability of the respiratory system in preterm infants. J Appl Physiol. 1988;65:441–444.
  • Lopes JM, Muller NL, Bryan MH, Bryan AC. Synergistic behavior of inspiratory muscles after diaphragmatic fatigue in the newborn. J Appl Physiol Respir Environ Exerc Physiol. 1981;51:547–551.
  • Heldt GP. The effect of gavage feeding on the mechanics of the lung, chest wall, and diaphragm of preterm infants. Pediatr Res. 1988;24:55–58.
  • Lehtonen L, Martin RJ. Ontogeny of sleep and awake states in relation to breathing in preterm infants. Semin Neonatol. 2004;9:229–238.
  • Mathew OP, Thoppil CK, Belan M. Motor activity and apnea in preterm infants. Is there a causal relationship? Am Rev Respir Dis. 1991;144:842–144.
  • Tamim H, Khogali M, Beydoun H, Melki I, Yunis K; National Collaborative Perinatal Neonatal Network. Consanguinity and apnea of prematurity. Am J Epidemiol. 2003;158:942–946.
  • Bloch-Salisbury E, Hall MH, Sharma P, Boyd T, Bednarek F, Paydarfar D. Heritability of apnea of prematurity: a retrospective twin study. Pediatrics. 2010;126:e779–e787.
  • Kumral A, Tuzun F, Yesilirmak DC, Duman N, Ozkan H. Genetic basis of apnea of prematurity and caffeine treatment response: role of adenosine receptor polymorphisms: genetic basis of apnea of prematurity. Acta Paediatr. 2012;101:e299–e303.
  • Bifano EM, Smith F, Borer J. Relationship between determinants of oxygen delivery and respiratory abnormalities in pre-term infants with anemia. J Pediatr. 1992;120:292–296.
  • Molloy EJ, Di Fiore JM, Martin RJ. Does gastroesophageal reflux cause apnea in preterm infants? Biol Neonate. 2005;87:254–261.
  • Davies AM, Koenig JS, Thach BT. Characteristics of upper airway chemoreflex prolonged apnea in human infants. Am Rev Respir Dis. 1989;139:668–673.
  • Kiatchoosakun P, Dreshaj IA, Abu-Shaweesh JM, Haxhiu MA, Martin RJ. Effects of hypoxia on respiratory neural output and lower esophageal sphincter pressure in piglets. Pediatr Res. 2002;52:50–55.
  • Omari TI. Apnea-associated reduction in lower esophageal sphincter tone in premature infants. J Pediatr. 2009;154:374–378.
  • Corvaglia L, Spizzichino M, Zama D, et al. Sodium alginate (Gaviscon®) does not reduce apnoeas related to gastro-oesophageal reflux in preterm infants. Early Hum Dev. 2011;87:775–778.
  • Corvaglia L, Spizzichino M, Aceti A, et al. A thickened formula does not reduce apneas related to gastroesophageal reflux in preterm infants. Neonatology. 2013;103:98–102.
  • Krous HF, Beckwith JB, Byard RW, et al. Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics. 2004;114:234–238.
  • Steinschneider A. Prolonged apnea and the sudden infant death syndrome: clinical and laboratory observations. Pediatrics. 1972;50:646–654.
  • Ramanathan R, Corwin MJ, Hunt CE, et al. Cardiorespiratory events recorded on home monitors: comparison of healthy infants with those at increased risk for SIDS. JAMA. 2001;285:2199–2207.
  • American Academy of Pediatrics, Committee on Fetus and Newborn. Apnea, sudden infant death syndrome, and home monitoring. Pediatrics. 2003;111:914–917.
  • Heimler R, Langlois J, Hodel DJ, Nelin LD, Sasidharan P. Effect of positioning on the breathing pattern of preterm infants. Arch Dis Child. 1992;67:312–314.
  • Martin RJ, Herrell N, Rubin D, Fanaroff A. Effect of supine and prone positions on arterial oxygen tension in the preterm infant. Pediatrics. 1979;63:528–531.
  • Jenni OG, von Siebenthal K, Wolf M, Keel M, Duc G, Bucher HU. Effect of nursing in the head elevated tilt position (15) on the incidence of bradycardic and hypoxemic episodes in pre-term infants. Pediatrics. 1997;100:622–625.
  • Pantalitschka T, Sievers J, Urschitz MS, Herberts T, Reher C, Poets CF. Randomised crossover trial of four nasal respiratory support systems for apnoea of prematurity in very low birthweight infants. Arch Dis Child. 2009;94:F245–F248.
  • Barrington KJ, Bull D, Finer NN. Randomized trial of nasal synchronized intermittent mandatory ventilation compared with continuous positive airway pressure after extubation of very low birth weight infants. Pediatrics. 2001;107:638–641.
  • Gizzi C, Papoff P, Giordano I, et al. Flow-synchronized nasal intermittent positive pressure ventilation for infants <32 weeks’ gestation with respiratory distress syndrome. Crit Care Res Pract. 2012;2012:301818.
  • Lemyre B, Davis PG, de Paoli AG. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for apnea of prematurity. Cochrane Database Syst Rev. 2002;1:CD002272.
  • Sreenan C, Lemke RP, Hudson-Mason A, Osiovich H. High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics. 2001;107:1081–1083.
  • Mayfield S, Jauncey-Cooke J, Hough JL, Schibler A, Gibbons K, Bogossian F. High-flow nasal cannula therapy for respiratory support in children. Cochrane Database Syst Rev. 2014;3:CD009850.
  • Tourneux P, Cardot V, Museux N, et al. Influence of thermal drive on central sleep apnea in the preterm neonate. Sleep. 2008;31:549–556.
  • Ludington-Hoe SM, Anderson GC, Swinth JY, Thompson C, Hadeed AJ. Randomized controlled trial of kangaroo care: cardiorespiratory and thermal effects on healthy preterm infants. Neonatal Netw. 2004;23:39–48.
  • Heimann K, Vaessen P, Peschgens T, Stanzel S, Wenzl TG, Orlikowsky T. Impact of skin to skin care, prone and supine positioning on cardiorespiratory parameters and thermoregulation in premature infants. Neonatology. 2010;97:311–317.
  • Blazer S, Reinersman GT, Askanazi J, Furst P, Katz DP, Fleschman AR. Branched-chain amino acids and respiratory pattern and function in the neonate. J Perinatol. 1994;14:290–295.
  • Karen T, Vatlach S, Poets A, Maas C, Poets CF, Bassler D. The impact of oral sucrose on apnea and bradycardia in preterm infants: a randomized cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2013;98:F93–F94.
  • Bloch-Salisbury E, Indic PP, Bednarek F, Paydarfar D. Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J Appl Physiol. 2009;107:1017–1027.
  • Marlier L, Gaugler C, Messer J. Olfactory stimulation prevents apnea in premature newborns. Pediatrics. 2005;115:83–88.
  • Zagol K, Lake DE, Vergales B, et al. Anemia, apnea of prematurity and blood transfusions. J Pediatr. 2012;161:417–421. e1.
  • Aranda JV, Gorman W, Bergsteinsson H, Gunn T. Efficacy of caffeine in treatment of apnea in the low-birth-weight infant. J Pediatr. 1977;90:467–472.
  • Schmidt B, Roberts RS, Davis P, et al; Caffeine for Apnea of Prematurity Trial Group. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354:2112–2121.
  • Schmidt B, Roberts RS, Davis P, et al; Caffeine for Apnea of Prematurity Trial Group. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357:1893–1902.
  • Steer P, Flenady V, Shearman A, et al; Caffeine Collaborative Study Group Steering Group. High dose caffeine citrate for extubation of preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2004;89:F499–F503.
  • Henderson-Smart DJ, De Paoli AG. Prophylactic methylxanthine for prevention of apnoea in preterm infants. Cochrane Database Syst Rev. 2010;12:CD000432.
  • Rhein LM, Dobson NR, Darnall RA, et al. Effects of caffeine on intermittent hypoxia in infants born prematurely: a randomized clinical trial. JAMA Pediatr. 2014;168:250–257.
  • Hoecker C, Nelle M, Poeschl J, Beedgen B, Linderkamp O. Caffeine impairs cerebral and intestinal blood flow velocity in preterm infants. Pediatrics. 2002;109:784–787.
  • Vatlach S, Arand J, Engel C, Poets CF. Safety profile comparison between extemporaneous and licensed preparation of caffeine citrate in preterm infants with apnea of prematurity. Neonatology. 2014;105:108–111.
  • Dobson NR, Patel RM, Smith BP, et al. Trends in caffeine use and association between clinical outcomes and timig of therapy in very low birth weight infants. J Pediatr. 2014;164:992–998. e3.
  • Barrington KJ, Finer NN, Torok-Both G, Jamali F, Coutts RT. Dose-response relationship of doxapram in the therapy for refractory apnea of prematurity. Pediatrics. 1987;80:22–27.
  • Bairam A, Akramoff-Gershan L, Beharry K, Laudignon N, Papageorgiou A, Aranda JV. Gastrointestinal absorption of doxapram in neonates. Am J Perinatol. 1991;8:110–113.
  • De Villiers GS, Walele A, Van der Merwe PL, Kalis NN. Second-degree atrioventricular heart block after doxapram administration. J Pediatr. 1998;133:149–150.
  • Sreenan C, Etches PC, Demianczuk N, Robertson CM. Isolated mental developmental delay in very low birth weight infants: association with prolonged doxapram therapy for apnea. J Pediatr. 2001;139:832–837.
  • Janvier A, Khairy M, Kokkotis A, Cormier C, Messmer D, Barrington KJ. Apnea is associated with neurodevelopmentalimpairment in very low birth weight infants. J Perinatol. 2004;24:763–768.