296
Views
2
CrossRef citations to date
0
Altmetric
Review

Etiology of Hypospadias: A Comparative Review of Genetic Factors and Developmental Processes Between Human and Animal Models

ORCID Icon, &
Pages 673-686 | Published online: 24 Dec 2020

References

  • Nelson CP, Park JM, Wan J, Bloom DA, Dunn RL, Wei JT. The increasing incidence of congenital penile anomalies in the United States. J Urol. 2005;174(4):1573–1576. doi:10.1097/01.ju.0000179249.21944.7e16148654
  • Baskin L. What is hypospadias? Clin Pediatr (Phila). 2017;56(5):409–418. doi:10.1177/000992281668461328081624
  • Manson JM, Carr MC. Molecular epidemiology of hypospadias: review of genetic and environmental risk factors. Birth Defects Res a Clin Mol Teratol. 2003;67(10):825–836. doi:10.1002/bdra.1008414745936
  • Holmes NM, Miller WL, Baskin LS. Lack of defects in androgen production in children with hypospadias. J Clin Endocrinol Metab. 2004;89(6):2811–2816. doi:10.1210/jc.2003-03209815181062
  • Vilela MLB, Willingham E, Buckley J, et al. Endocrine disruptors and hypospadias: role of genistein and the fungicide vinclozolin. Urology. 2007;70(3):618–621. doi:10.1016/j.urology.2007.05.00417905137
  • Zhao S, Li D, Bei X-Y, et al. Maternal exposure to di-n-butyl phthalate (DBP) promotes epithelial-mesenchymal transition via regulation of autophagy in uroepithelial cell. Toxicology. 2018;406:114–122. doi:10.1016/j.tox.2018.07.01330053495
  • Cunha GR, Sinclair A, Ricke WA, Robboy SJ, Cao M, Baskin LS. Reproductive tract biology: of mice and men. Differentiation. 2019;110:49–63.31622789
  • Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The genetic and environmental factors underlying hypospadias. Sex Dev. 2015;9(5):239–259. doi:10.1159/00044198826613581
  • Blaschko SD, Cunha GR, Baskin LS. Molecular mechanisms of external genitalia development. Differentiation. 2012;84(3):261–268.22790208
  • Cohn MJ. Development of the external genitalia: conserved and divergent mechanisms of appendage patterning. Dev Dyn. 2011;240(5):1108–1115. doi:10.1002/dvdy.2263121465625
  • Ipulan LA, Suzuki K, Matsushita S, et al. Development of the external genitalia and their sexual dimorphic regulation in mice. Sex Dev. 2014;8(5):297–310. doi:10.1159/00035793224503953
  • Phillips TR, Wright DK, Gradie PE, Johnston LA, Pask AJ. A comprehensive atlas of the adult mouse penis. Sex Dev. 2015;9(3):162–172. doi:10.1159/00043101026112156
  • Sinclair AW, Cao M, Pask A, Baskin L, Cunha GR. Flutamide-induced hypospadias in rats: a critical assessment. Differentiation. 2017;94:37–57. doi:10.1016/j.diff.2016.12.00128043016
  • Wang S, Shi M, Zhu D, Mathews R, Zheng Z. External genital development, urethra formation, and hypospadias induction in guinea pig: a double zipper model for human urethral development. Urology. 2018;113:179–186. doi:10.1016/j.urology.2017.11.00229155192
  • Kurzrock EA, Jegatheesan P, Cunha GR, Baskin LS. Urethral development in the fetal rabbit and induction of hypospadias: a model for human development. J Urol. 2000;164(5):1786–1792. doi:10.1016/S0022-5347(05)67107-811025770
  • Switonski M, Payan-Carreira R, Bartz M, et al. Hypospadias in a male (78,XY; SRY-positive) dog and sex reversal female (78,XX; SRY-negative) dogs: clinical, histological and genetic studies. Sex Dev. 2012;6(1–3):128–134. doi:10.1159/00033092121893969
  • Lowry RB, Kliman MR. Hypospadias in successive generations-possible dominant gene inheritance. Clin Genet. 1976;9(3):285–288. doi:10.1111/j.1399-0004.1976.tb01576.x1261066
  • Schnack TH, Zdravkovic S, Myrup C, et al. Familial aggregation of hypospadias: a cohort study. Am J Epidemiol. 2008;167(3):251–256. doi:10.1093/aje/kwm31718042671
  • Bauer SB, Bull MJ, Retik AB. Hypospadias-familial study. J Urol. 1979;121(4):474–477.439223
  • Stoll C, Alembik Y, Roth MP, Dott B. Genetic and environmental-factors in hypospadias. J Med Genet. 1990;27(9):559–563. doi:10.1136/jmg.27.9.5592231648
  • Vottero A, Minari R, Viani I, et al. Evidence for epigenetic abnormalities of the androgen receptor gene in foreskin from children with hypospadias. J Clin Endocrinol Metab. 2011;96(12):E1953–E1962. doi:10.1210/jc.2011-051121937623
  • Ohsako S, Aiba T, Miyado M, et al. Expression of xenobiotic biomarkers CYP1 family in preputial tissue of patients with hypospadias and phimosis and its association with DNA methylation level of SRD5A2 minimal promoter. Arch Environ Contam Toxicol. 2018;74(2):240–247. doi:10.1007/s00244-017-0466-x29080015
  • Choudhry S, Deshpande A, Qiao L, Beckman K, Sen S, Baskin LS. Genome-wide DNA methylation profiling of CpG islands in hypospadias. J Urol. 2012;188(4):1450–1455. doi:10.1016/j.juro.2012.03.04722906644
  • Lyon MF, Hawkes SG. X-linked gene for testicular feminization in the mouse. Nature. 1970;227(5264):1217–1219. doi:10.1038/2271217a05452809
  • Zheng Z, Armfield BA, Cohn MJ. Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies. Proc Natl Acad Sci U S A. 2015;112(52):E7194–7203. doi:10.1073/pnas.151598111226598695
  • Hughes IA, Davies JD, Bunch TI, Pasterski V, Mastroyannopoulou K, MacDougall J. Androgen insensitivity syndrome. Lancet. 2012;380(9851):1419–1428. doi:10.1016/S0140-6736(12)60071-322698698
  • Wang YP, Li Q, Xu JJ, et al. Mutation analysis of five candidate genes in Chinese patients with hypospadias. Eur J Hum Genet. 2004;12(9):706–712. doi:10.1038/sj.ejhg.520123215266301
  • Adamovic T, Nordenskjold A. The CAG repeat polymorphism in the androgen receptor gene modifies the risk for hypospadias in Caucasians. BMC Med Genet. 2012;13.22397687
  • Muroya K, Sasagawa I, Suzuki Y, Nakada T, Ishii T, Ogata T. Hypospadias and the androgen receptor gene: mutation screening and CAG repeat length analysis. Mol Hum Reprod. 2001;7(5):409–413. doi:10.1093/molehr/7.5.40911331662
  • Aschim EL, Nordenskjold A, Giwercman A, et al. Linkage between cryptorchidism, hypospadias, and GGN repeat length in the androgen receptor gene. J Clin Endocrinol Metab. 2004;89(10):5105–5109. doi:10.1210/jc.2004-029315472213
  • Yong W, Yang Z, Periyasamy S, et al. Essential role for co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J Biol Chem. 2007;282(7):5026–5036. doi:10.1074/jbc.M60936020017142810
  • Beleza-Meireles A, Barbaro M, Wedell A, Tohonen V, Nordenskjold A. Studies of a co-chaperone of the androgen receptor, FKBP52, as candidate for hypospadias. Reprod Biol Endocrinol. 2007;5(1):8. doi:10.1186/1477-7827-5-817343741
  • Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M. Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development. 2000;127(19):4277–4291.10976058
  • Ban S, Sata F, Kurahashi N, et al. Genetic polymorphisms of ESR1 and ESR2 that may influence estrogen activity and the risk of hypospadias. Hum Reprod. 2008;23(6):1466–1471. doi:10.1093/humrep/den09818375409
  • Watanabe M, Yoshida R, Ueoka K, et al. Haplotype analysis of the estrogen receptor 1 gene in male genital and reproductive abnormalities. Hum Reprod. 2007;22(5):1279–1284. doi:10.1093/humrep/del51317283037
  • O’donnell L, Robertson KM, Jones ME, Simpson E. Estrogen and spermatogenesis. Endocr Rev. 2001;22(3):289–318.11399746
  • Beleza-Meireles A, Omrani D, Kockum I, Frisen L, Lagerstedt K, Nordenskjold A. Polymorphisms of estrogen receptor beta gene are associated with hypospadias. J Endocrinol Invest. 2006;29(1):5–10. doi:10.1007/BF0334917016553027
  • van der Zanden LFM, van Rooij IALM, Feitz WFJ, et al. Genetics of hypospadias: are single-nucleotide polymorphisms in SRD5A2, ESR1, ESR2, and ATF3 really associated with the malformation? J Clin Endocrinol Metab. 2010;95(5):2384–2390. doi:10.1210/jc.2009-210120215396
  • Goyal H, Braden T, Cooke P, et al. Estrogen receptor-α mediates estrogen-inducible abnormalities in the developing penis. Reproduction. 2007;133(5):1057–1067. doi:10.1530/REP-06-032617616734
  • Thigpen AE, Davis DL, Milatovich A, et al. Molecular genetics of steroid 5 alpha-reductase 2 deficiency. J Clin Invest. 1992;90(3):799–809. doi:10.1172/JCI1159541522235
  • Mahendroo MS, Cala KM, Hess DL, Russell DW. Unexpected virilization in male mice lacking steroid 5 alpha-reductase enzymes. Endocrinology. 2001;142(11):4652–4662. doi:10.1210/endo.142.11.851011606430
  • Singh N, Gupta DK, Sharma S, et al. Single-nucleotide and copy-number variance related to severity of hypospadias. Pediatr Surg Int. 2018;34(9):991–1008. doi:10.1007/s00383-018-4330-530078147
  • Rahimi M, Ghanbari M, Fazeli Z, et al. Association of SRD5A2 gene mutations with risk of hypospadias in the Iranian population. J Endocrinol Invest. 2017;40(4):391–396. doi:10.1007/s40618-016-0573-y27848231
  • Sahu R, Boddula R, Sharma P, et al. Genetic analysis of the SRD5A2 gene in Indian patients with 5 alpha-reductase deficiency. J Pediatr Endocrinol Metab. 2009;22(3):247–254.19492581
  • Bahceci M, Ersay AR, Tuzcu A, Hiort O, Richter-Unruh A, Gokalp D. A novel missense mutation of 5-alpha reductase type 2 gene (SRD5A2) leads to severe male pseudohermaphroditism in a Turkish family. Urology. 2005;66(2):407–410. doi:10.1016/j.urology.2005.02.02116098368
  • Yuan S, Meng L, Zhang Y, et al. Genotype-phenotype correlation and identification of two novel SRD5A2 mutations in 33 Chinese patients with hypospadias. Steroids. 2017;125:61–66. doi:10.1016/j.steroids.2017.06.01028663096
  • Hu MC, Hsu NC, El Hadj NB, et al. Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol Endocrinol. 2002;16(8):1943–1950. doi:10.1210/me.2002-005512145347
  • Rubtsov P, Karmanov M, Sverdlova P, Spirin P, Tiulpakov A. A novel homozygous mutation in CYP11A1 gene is associated with late-onset adrenal insufficiency and hypospadias in a 46, XY patient. J Clin Endocrinol Metab. 2009;94(3):936–939. doi:10.1210/jc.2008-111819116240
  • Codner E, Okuma C, Iniguez G, et al. Molecular study of the 3 beta-hydroxysteroid dehydrogenase gene type II in patients with hypospadias. J Clin Endocrinol Metab. 2004;89(2):957–964. doi:10.1210/jc.2002-02087314764821
  • Sata F, Kurahashi N, Ban S, et al. Genetic polymorphisms of 17β-hydroxysteroid dehydrogenase 3 and the risk of hypospadias. J Sex Med. 2010;7(8):2729–2738.20059664
  • Soderhall C, Korberg IB, Thai HT, et al. Fine mapping analysis confirms and strengthens linkage of four chromosomal regions in familial hypospadias. Eur J Hum Genet. 2015;23(4):516–522. doi:10.1038/ejhg.2014.12924986825
  • Zimmermann S, Steding G, Emmen JM, et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol. 1999;13(5):681–691. doi:10.1210/mend.13.5.027210319319
  • El Houate B, Rouba H, Sibai H, et al. Novel mutations involving the INSL3 gene associated with cryptorchidism. J Urol. 2007;177(5):1947–1951. doi:10.1016/j.juro.2007.01.00217437853
  • Miyado M, Nakamura M, Miyado K, et al. Mamld1 deficiency significantly reduces mRNA expression levels of multiple genes expressed in mouse fetal Leydig cells but permits normal genital and reproductive development. Endocrinology. 2012;153(12):6033–6040. doi:10.1210/en.2012-132423087174
  • Kalfa N, Liu B, Ophir K, et al. Mutations of CXorf6 are associated with a range of severities of hypospadias. Eur J Endocrinol. 2008;159(4):453–458. doi:10.1530/EJE-08-008518635673
  • Fukami M, Wada Y, Miyabayashi K, et al. CXorf6 is a causative gene for hypospadias. Nat Genet. 2006;38(12):1369–1371.17086185
  • Ratan SK, Sharma A, Kapoor S, et al. Polymorphism of 3ʹ UTR of MAMLD1 gene is also associated with increased risk of isolated hypospadias in Indian children: a preliminary report. Pediatr Surg Int. 2016;32(5):515–524.26815876
  • Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994;77(4):481–490.8187173
  • Gubbay J, Collignon J, Koopman P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346(6281):245–250.2374589
  • Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell. 1993;74(4):679–691. doi:10.1016/0092-8674(93)90515-R8395349
  • Gao F, Maiti S, Alam N, et al. The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci U S A. 2006;103(32):11987–11992.16877546
  • Jameson JL, Achermann JC, Ozisik G, Meeks JJ. Battle of the sexes: new insights into genetic pathways of gonadal development. Trans Am Clin Climatol Assoc. 2003;114:51–63.12813911
  • Peycelon M, Mansour-Hendili L, Hyon C, et al. Recurrent intragenic duplication within the NR5A1 gene and severe proximal hypospadias. Sex Dev. 2017;11(5–6):293–297. doi:10.1159/00048590929332064
  • Wu JY, McGown IN, Lin L, et al. A novel NR5A1 variant in an infant with elevated testosterone from an Australasian cohort of 46,XY patients with disorders of sex development. Clin Endocrinol (Oxf). 2013;78(4):545–550.22909003
  • Koehler B, Lin L, Mazen I, et al. The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency. Eur J Endocrinol. 2009;161(2):237–242.19439508
  • Tuhan H, Anik A, Catli G, et al. A novel mutation in steroidogenic factor (SF1/NR5A1) gene in a patient with 46 XY DSD without adrenal insufficiency. Andrologia. 2017;49(1):e12589. doi:10.1111/and.12589
  • Isidor B, Capito C, Paris F, et al. Familial frameshift SRY mutation inherited from a mosaic father with testicular dysgenesis syndrome. J Clin Endocrinol Metab. 2009;94(9):3467–3471. doi:10.1210/jc.2009-022619531589
  • Yucel S, Liu W, Cordero D, Donjacour A, Cunha G, Baskin LS. Anatomical studies of the fibroblast growth factor-10 mutant, sonic hedge hog mutant and androgen receptor mutant mouse genital tubercle. Adv Exp Med Biol. 2004;545:123–148.15086024
  • Gredler ML, Seifert AW, Cohn MJ. Tissue-specific roles of Fgfr2 in development of the external genitalia. Development. 2015;142(12):2203–2212. doi:10.1242/dev.11989126081573
  • Seifert AW, Bouldin CM, Choi KS, Harfe BD, Cohn MJ. Multiphasic and tissue-specific roles of sonic hedgehog in cloacal septation and external genitalia development. Development. 2009;136(23):3949–3957. doi:10.1242/dev.04229119906862
  • Miyagawa S, Matsumaru D, Murashima A, et al. The role of sonic hedgehog-Gli2 pathway in the masculinization of external genitalia. Endocrinology. 2011;152(7):2894–2903. doi:10.1210/en.2011-026321586556
  • Perriton CL, Powles N, Chiang C, Maconochie MK, Cohn MJ. Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev Biol. 2002;247(1):26–46. doi:10.1006/dbio.2002.066812074550
  • Beleza-Meireles A, Lundberg F, Lagerstedt K, et al. FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. Eur J Hum Genet. 2007;15(4):405–410. doi:10.1038/sj.ejhg.520177717264867
  • Carmichael SL, Ma C, Choudhry S, Lammer EJ, Witte JS, Shaw GM. Hypospadias and genes related to genital tubercle and early urethral development. J Urol. 2013;190(5):1884–1892. doi:10.1016/j.juro.2013.05.06123727413
  • Seifert AW, Yamaguchi T, Cohn MJJD. Functional and phylogenetic analysis shows that Fgf8 is a marker of genital induction in mammals but is not required for external genital development. Development. 2009;136(15):2643–2651. doi:10.1242/dev.03683019592577
  • Ching ST, Cunha GR, Baskin LS, Basson MA, Klein OD. Coordinated activity of Spry1 and Spry2 is required for normal development of the external genitalia. Dev Biol. 2014;386(1):1–11.24361260
  • Kajioka D, Suzuki K, Nakada S, et al. Bmp4 is an essential growth factor for the initiation of genital tubercle (GT) outgrowth. Congenit Anom (Kyoto). 2019.
  • Wu X, Ferrara C, Shapiro E, Grishina I. Bmp7 expression and null phenotype in the urogenital system suggest a role in re-organization of the urethral epithelium. Gene Expr Patterns. 2009;9(4):224–230. doi:10.1016/j.gep.2008.12.00519159697
  • Lin C, Yin Y, Long F, Ma L. Tissue-specific requirements of beta-catenin in external genitalia development. Development. 2008;135(16):2815–2825. doi:10.1242/dev.02058618635608
  • Chen T, Li Q, Xu J, et al. Mutation screening of BMP4, BMP7, HOXA4 and HOXB6 genes in Chinese patients with hypospadias. Eur J Hum Genet. 2007;15(1):23–28.17003840
  • Fukuzawa R, Heathcott RW, Sano M, Morison IM, Yun K, Reeve AE. Myogenesis in Wilms’ tumors is associated with mutations of the WT1 gene and activation of Bcl-2 and the wnt signaling pathway. Pediatr Dev Pathol. 2004;7(2):125–137. doi:10.1007/s10024-003-3023-814994125
  • Han X-R, Wen X, Wang S, et al. Associations of TGFBR1 and TGFBR2 gene polymorphisms with the risk of hypospadias: a case-control study in a Chinese population. Biosci Rep. 2017;37.
  • Placencio VR, Sharif-Afshar AR, Li X, et al. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res. 2008;68(12):4709–4718. doi:10.1158/0008-5472.CAN-07-628918559517
  • Dravis C, Yokoyama N, Chumley MJ, et al. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev Biol. 2004;271(2):272–290. doi:10.1016/j.ydbio.2004.03.02715223334
  • Mallo M, Wellik DM, Deschamps J. Hox genes and regional patterning of the vertebrate body plan. Dev Biol. 2010;344(1):7–15. doi:10.1016/j.ydbio.2010.04.02420435029
  • Morgan EA, Nguyen SB, Scott V, Stadler HS. Loss of Bmp7 and Fgf8 signaling in Hoxa13-mutant mice causes hypospadia. Development. 2003;130(14):3095–3109.12783783
  • Podlasek CA, Duboule D, Bushman W. Male accessory sex organ morphogenesis is altered by loss of function of Hoxd-13. Dev Dyn. 1997;208(4):454–465.9097018
  • Tuezel E, Samll H, Kuru I, et al. Association of hypospadias with hypoplastic synpolydactyly and role of HOXD13 gene mutations. Urology. 2007;70(1):161–164. doi:10.1016/j.urology.2007.03.01317656229
  • Mortlock DP, Innis JW. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet. 1997;15(2):179–180.9020844
  • Innis JW, Mortlock D, Chen Z, et al. Polyalanine expansion in HOXA13: three new affected families and the molecular consequences in a mouse model. Hum Mol Genet. 2004;13(22):2841–2851.15385446
  • Behringer RR, Crotty DA, Tennyson VM, Brinster RL, Palmiter RD, Wolgemuth DJ. Sequences 5ʹ of the homeobox of the Hox-1.4 gene direct tissue-specific expression of lacZ during mouse development. Development. 1993;117(3):823–833.8100763
  • Xu B, Geerts D, Bu Z, et al. Regulation of endometrial receptivity by the highly expressed HOXA9, HOXA11 and HOXD10 HOX-class homeobox genes. Hum Reprod. 2014;29(4):781–790.24549215
  • Rancourt DE, Tsuzuki T, Capecchi MR. Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev. 1995;9(1):108–122. doi:10.1101/gad.9.1.1087828847
  • Horan GS, Wu K, Wolgemuth DJ, Behringer RR. Homeotic transformation of cervical vertebrae in Hoxa-4 mutant mice. Proc Natl Acad Sci U S A. 1994;91(26):12644–12648. doi:10.1073/pnas.91.26.126447809093
  • Geller F, Feenstra B, Carstensen L, et al. Genome-wide association analyses identify variants in developmental genes associated with hypospadias. Nat Genet. 2014;46(9):957–963. doi:10.1038/ng.306325108383
  • Taylor HS, Fei X. Emx2 regulates mammalian reproduction by altering endometrial cell proliferation. Mol Endocrinol. 2005;19(11):2839–2846. doi:10.1210/me.2005-013015994197
  • Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development. 1997;124(9):1653–1664.9165114
  • Piard J, Mignot B, Arbez-Gindre F, et al. Severe sex differentiation disorder in a boy with a 3.8 Mb 10q25.3-q26.12 microdeletion encompassing EMX2. Am J Med Genet A. 2014;164A(10):2618–2622. doi:10.1002/ajmg.a.3666224975717
  • Liu B, Agras K, Willingham E, Vilela ML, Baskin LS. Activating transcription factor 3 is estrogen-responsive in utero and upregulated during sexual differentiation. Horm Res. 2006;65(5):217–222.16569931
  • Hartman MG, Lu D, Kim ML, et al. Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol. 2004;24(13):5721–5732. doi:10.1128/MCB.24.13.5721-5732.200415199129
  • Beleza-Meireles A, Tohonen V, Soderhall C, et al. Activating transcription factor 3: a hormone responsive gene in the etiology of hypospadias. Eur J Endocrinol. 2008;158(5):729–739. doi:10.1530/EJE-07-079318426833
  • Bhoj EJ, Ramos P, Baker LA, et al. Human balanced translocation and mouse gene inactivation implicate basonuclin 2 in distal urethral development. Eur J Hum Genet. 2011;19(5):540–546. doi:10.1038/ejhg.2010.24521368915
  • Harms FL, Nampoothiri S, Anazi S, et al. Elsahy-waters syndrome is caused by biallelic mutations in CDH11. Am J Med Genet A. 2018;176(2):477–482. doi:10.1002/ajmg.a.3856829271567
  • Hozyasz KK, Mostowska A, Kowal A, Mydlak D, Tsibulski A, Jagodzinski PP. Further evidence of the association of the diacylglycerol kinase kappa (DGKK) gene with hypospadias. Urol J. 2018;15(5):272–276.29464676
  • van der Zanden LF, van Rooij IA, Feitz WF, et al. Common variants in DGKK are strongly associated with risk of hypospadias. Nat Genet. 2011;43(1):48–50. doi:10.1038/ng.72121113153
  • Kojima Y, Koguchi T, Mizuno K, et al. Single nucleotide polymorphisms of HAAO and IRX 6 genes as risk factors for hypospadias. J Urol. 2018.
  • Okur V, LeDuc CA, Guzman E, Valivullah ZM, Anyane-Yeboa K, Chung WK. Homozygous noncanonical splice variant in LSM1 in two siblings with multiple congenital anomalies and global developmental delay. Cold Spring Harb Mol Case Stud. 2019;5(3):a004101. doi:10.1101/mcs.a00410131010896
  • Zhang X, Chen Y, Zhao S, Markljung E, Nordenskjold A. Hypospadias associated with hypertelorism, the mildest phenotype of opitz syndrome. J Hum Genet. 2011;56(5):348–351. doi:10.1038/jhg.2011.1721326312
  • Dokter EM, van Rooij IA, Wijers CH, et al. Interaction between MTHFR 677C>T and periconceptional folic acid supplementation in the risk of hypospadias. Birth Defects Res a Clin Mol Teratol. 2016;106(4):275–284. doi:10.1002/bdra.2348726879531
  • Pinz H, Pyle LC, Li D, et al. De novo variants in Myelin regulatory factor (MYRF) as candidates of a new syndrome of cardiac and urogenital anomalies. Am J Med Genet A. 2018;176(4):969–972. doi:10.1002/ajmg.a.3862029446546
  • Riley DE, Cho IR, Krieger JN. A hemizygous short tandem repeat polymorphism 3ʹ to the human phosphoglycerate kinase gene. Mol Biol Rep. 1999;26(3):159–165. doi:10.1023/A:100690862475710532310
  • Amiel J, Espinosa-Parrilla Y, Steffann J, et al. Large-scale deletions and SMADIP1 truncating mutations in syndromic hirschsprung disease with involvement of midline structures. Am J Hum Genet. 2001;69(6):1370–1377. doi:10.1086/32434211595972
  • Lancioni A, Pizzo M, Fontanella B, et al. Lack of Mid1, the mouse ortholog of the Opitz syndrome gene, causes abnormal development of the anterior cerebellar vermis. J Neurosci. 2010;30(8):2880–2887. doi:10.1523/JNEUROSCI.4196-09.201020181585
  • Alimperti S, You H, George T, Agarwal SK, Andreadis ST. Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo. J Cell Sci. 2014;127(Pt 12):2627–2638. doi:10.1242/jcs.13483324741067
  • Shi H, Enriquez A, Rapadas M, et al. NAD deficiency, congenital malformations, and niacin supplementation. N Engl J Med. 2017;377(6):544–552. doi:10.1056/NEJMoa161636128792876
  • Danshina PV, Geyer CB, Dai Q, et al. Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biol Reprod. 2010;82(1):136–145. doi:10.1095/biolreprod.109.07969919759366
  • Lin C, Werner R, Ma L, Miner JH. Requirement for basement membrane laminin alpha5 during urethral and external genital development. Mech Dev. 2016;141:62–69. doi:10.1016/j.mod.2016.05.00427208857
  • Cunha GR, Sinclair A, Risbridger G, Hutson J, Baskin LS. Current understanding of hypospadias: relevance of animal models. Nat Rev Urol. 2015;12(5):271–280. doi:10.1038/nrurol.2015.5725850792
  • Gray LE, Ostby J, Furr J, et al. Effects of environmental antiandrogens on reproductive development in experimental animals. Hum Reprod Update. 2001;7(3):248–264. doi:10.1093/humupd/7.3.24811392371
  • Rider CV, Furr JR, Wilson VS, Gray LE Jr. Cumulative effects of in utero administration of mixtures of reproductive toxicants that disrupt common target tissues via diverse mechanisms of toxicity. Int J Androl. 2010;33(2):443–462. doi:10.1111/j.1365-2605.2009.01049.x20487044
  • Tan XH, Liu X, Long CL, et al. Histological and biochemical evaluation of urethral scar following three different hypospadias repairs: an experimental study in rabbits. Eur J Pediatr Surg. 2018;28(5):420–425. doi:10.1055/s-0037-160534728838000
  • Switonski M, Dzimira S, Aleksiewicz R, et al. Hypospadias is not rare in dogs: five new cases, a retrospective study, and a review of the literature. Sex Dev. 2018. doi:10.1159/000490079
  • Nowacka-Woszuk J, Szczerbal I, Salamon S, et al. Testicular disorder of sex development in four cats with a male karyotype (38,XY; SRY-positive). Anim Reprod Sci. 2014;151(1–2):42–48. doi:10.1016/j.anireprosci.2014.10.00125455261
  • Smith KC, Brown PJ, Barr FJ. A survey of congenital reproductive abnormalities in rams in abattoirs in south west England. Reprod Domest Anim. 2012;47(5):740–745. doi:10.1111/j.1439-0531.2011.01952.x22136299
  • Iannuzzi A, Braun M, Genualdo V, et al. Clinical, cytogenetic and molecular genetic characterization of a tandem fusion translocation in a male Holstein cattle with congenital hypospadias and a ventricular septal defect. PLoS One. 2020;15(1):e0227117. doi:10.1371/journal.pone.022711731923267
  • De Lorenzi L, Genualdo V, Iannuzzi A, et al. Cytogenetic and genetic studies in a hypospadic horse (Equus caballus, 2n = 64). Sex Dev. 2010;4(6):352–357. doi:10.1159/00031952720733278
  • Krzeminska P, D’Anza E, Ciotola F, et al. Polymorphisms of MAMLD1, SRD5A2, and AR candidate genes in seven dogs (78,XY; SRY-Positive) affected by hypospadias or cryptorchidism. Sex Dev. 2019;13(2):92–98. doi:10.1159/00050021931055572
  • Cassata R, Iannuzzi A, Parma P, et al. Clinical, cytogenetic and molecular evaluation in a dog with bilateral cryptorchidism and hypospadias. Cytogenet Genome Res. 2008;120(1–2):140–143. doi:10.1159/00011875318467838
  • Szczerbal I, Nowacka-Woszuk J, Nizanski W, et al. Disorders of sex development are an emerging problem in French bulldogs: a description of six new cases and a review of the literature. Sex Dev. 2019;13(4):205–211. doi:10.1159/00050658232203972
  • Mihsler L, Hussein HA, Wehrend A. Perineal hypospadia in a red holstein-calf. A case report. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2015;43(2):105–108.25798564
  • Galanty M, Jurka P, Zielinska P. Surgical treatment of hypospadias. Techniques and results in six dogs. Pol J Vet Sci. 2008;11(3):235–243.18942547
  • Li Y, Sinclair A, Cao M, et al. Canalization of the urethral plate precedes fusion of the urethral folds during male penile urethral development: the double zipper hypothesis. J Urol. 2015;193(4):1353–1359. doi:10.1016/j.juro.2014.09.10825286011
  • Overland M, Li Y, Cao M, et al. Canalization of the vestibular plate in the absence of urethral fusion characterizes development of the human clitoris: the single zipper hypothesis. J Urol. 2016;195(4 Pt 2):1275–1283. doi:10.1016/j.juro.2015.07.11726926534
  • Seifert AW, Harfe BD, Cohn MJ. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum. Dev Biol. 2008;318(1):143–152. doi:10.1016/j.ydbio.2008.03.01718439576
  • Liu G, Liu X, Shen J, Sinclair A, Baskin L, Cunha GR. Contrasting mechanisms of penile urethral formation in mouse and human. Differentiation. 2018;101:46–64. doi:10.1016/j.diff.2018.05.00129859371
  • Sinclair AW, Cao M, Shen J, et al. Mouse hypospadias: a critical examination and definition. Differentiation. 2016;92(5):306–317. doi:10.1016/j.diff.2016.03.00427068029
  • Kluth D, Fiegel HC, Geyer C, Metzger R. Embryology of the distal urethra and external genitals. Semin Pediatr Surg. 2011;20(3):176–187. doi:10.1053/j.sempedsurg.2011.03.00321708338
  • Rodriguez E Jr, Weiss DA, Ferretti M, et al. Specific morphogenetic events in mouse external genitalia sex differentiation are responsive/dependent upon androgens and/or estrogens. Differentiation. 2012;84(3):269–279. doi:10.1016/j.diff.2012.07.00322925506
  • Goldfoot DA, Resko JA, Goy RW. Induction of target organ insensitivity to testosterone in male guinea-pig with cyproterone. J Endocrinol. 1971;50(3):423–429. doi:10.1677/joe.0.05004235558049
  • Connolly PB, Resko JA. Role of steroid 5-alpha-reductase activity in sexual-differentiation of the guinea-pig. Neuroendocrinology. 1989;49(3):324–330. doi:10.1159/0001251342716956
  • Price D, Ortiz E, Zaaijer JJJTAR. Organ culture studies of hormone secretion in endocrine glands of fetal guinea pigs III. The relation of testicular hormone to sex differentiation of the reproductive ducts. Anat Rec. 1967;157(1):27–41. doi:10.1002/ar.10915701066030757
  • Wang S, Zheng Z. Differential cell proliferation and cell death during the urethral groove formation in guinea pig model. Pediatr Res. 2019;86(4):452–459. doi:10.1038/s41390-018-0236-030467344