401
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Mitochondria in Cancer Stem Cells: From an Innocent Bystander to a Central Player in Therapy Resistance

ORCID Icon, ORCID Icon & ORCID Icon
Pages 19-41 | Received 23 Apr 2023, Accepted 15 Aug 2023, Published online: 23 Aug 2023

References

  • Ebben JD, Treisman DM, Zorniak M, Kutty RG, Clark PA, Kuo JS. The cancer stem cell paradigm: a new understanding of tumor development and treatment. Expert Opin Ther Targets. 2010;14(6):621–632. PMID: 20426697. doi:10.1517/14712598.2010.485186
  • Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–648. PMID: 7509044. doi:10.1038/367645a0
  • Kleinsmith LJ, Pierce GB. Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Res. 1964;24:1544–1551. PMID: 14234000.
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–737. PMID: 9212098. doi:10.1038/nm0797-730
  • Makino S. Further evidence favoring the concept of the stem cell in ascites tumors of rats. Ann N Y Acad Sci. 1956;63:818–830. PMID: 13314436. doi:10.1111/j.1749-6632.1956.tb50894.x
  • Stevens LC. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol. 1970;21:364–382. PMID: 5436899. doi:10.1016/0012-1606(70)90130-2
  • Hermann PC, Bhaskar S, Cioffi M, Heeschen C. Cancer stem cells in solid tumors. Semin Cancer Biol. 2010;20:77–84. PMID: 20371287. doi:10.1016/j.semcancer.2010.03.004
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–3988. PMID: 12629218. doi:10.1073/pnas.0530291100
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–115. PMID: 17122771. doi:10.1038/nature05384
  • Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401. PMID: 15549107. doi:10.1038/nature03128
  • Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–1037. PMID: 17283135. doi:10.1158/0008-5472.CAN-06-2030
  • Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J Clin Oncol. 2008;26:2862–2870. PMID: 18539965. doi:10.1200/JCO.2007.15.1472
  • Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature. 2008;451:345–349. PMID: 18202660. doi:10.1038/nature06489
  • Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–4320. PMID: 18519691. doi:10.1158/0008-5472.CAN-08-0364
  • Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25:20. PMID: 29506506. doi:10.1186/s12929-018-0426-4
  • Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8. PMID: 32296030. doi:10.1038/s41392-020-0110-5
  • Capp J-P. Cancer stem cells: from historical roots to a new perspective. J Oncol. 2019;2019:5189232. PMID: 31308849. doi:10.1155/2019/5189232
  • Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–333. PMID: 24522528. doi:10.1038/nature13038
  • Auffinger B, Tobias AL, Han Y, et al. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 2014;21:1119–1131. PMID: 24608791. doi:10.1038/cdd.2014.31
  • Hamerlik P, Lathia JD, Rasmussen R, et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med. 2012;209:507–520. PMID: 22393126. doi:10.1084/jem.20111424
  • Huang R, Wang J, Zhong Y, et al. Mitochondrial DNA Deficiency in Ovarian Cancer Cells and Cancer Stem Cell-like Properties. Anticancer Res. 2015;35:3743–3753. PMID: 26124317.
  • Huang H, Zhang S, Li Y, et al. Suppression of mitochondrial ROS by prohibitin drives glioblastoma progression and therapeutic resistance. Nat Commun. 2021;12:3720. PMID: 34140524. doi:10.1038/s41467-021-24108-6
  • Ren Y, Liang H, Wang X, Cao Z, Ma Y, Liu X. Alterations in mitochondrial function and energy metabolism-related properties in thyroid cancer stem cells. Acta Biochim Pol. 2021;69:11–17. PMID: 34826218. doi:10.18388/abp.2020_5370
  • Kuntz EM, Baquero P, Michie AM, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23:1234–1240. PMID: 28920959. doi:10.1038/nm.4399
  • Chen J, Li Y, T-S Y, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488:522–526. PMID: 22854781. doi:10.1038/nature11287
  • Qian ZR, Rubinson DA, Nowak JA, et al. Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma. JAMA Oncol. 2018;4:e173420. PMID: 29098284. doi:10.1001/jamaoncol.2017.3420
  • Shlush LI, Mitchell A, Heisler L, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547:104–108. PMID: 28658204. doi:10.1038/nature22993
  • Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine. 2016;95:S20–5. PMID: 27611935. doi:10.1097/MD.0000000000004766
  • Marzagalli M, Fontana F, Raimondi M, Limonta P. Cancer stem cells-key players in tumor relapse. Cancers. 2021;13:376. PMID: 33498502. doi:10.3390/cancers13030376
  • Sehgal P, Chaturvedi P. Chromatin and cancer: implications of disrupted chromatin organization in tumorigenesis and its diversification. Cancers. 2023;15:466. PMID: 36672415. doi:10.3390/cancers15020466
  • Dave B, Mittal V, Tan NM, Chang JC. Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res. 2012;14:202. PMID: 22264257. doi:10.1186/bcr2938
  • Mani SA, Guo W, Liao M-J, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–715. PMID: 18485877. doi:10.1016/j.cell.2008.03.027
  • Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106:13820–13825. PMID: 19666588. doi:10.1073/pnas.0905718106
  • Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front Pharmacol. 2020;11:904. PMID: 32625096. doi:10.3389/fphar.2020.00904
  • Scheel C, Eaton EN, SH-J L, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–940. PMID: 21663795. doi:10.1016/j.cell.2011.04.029
  • Sun Y-F, Xu Y, Yang X-R, et al. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology. 2013;57:1458–1468. PMID: 23175471. doi:10.1002/hep.26151
  • Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–323. PMID: 18371365. doi:10.1016/j.stem.2007.06.002
  • Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98:756–765. PMID: 18268494. doi:10.1038/sj.bjc.6604242
  • Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–7021. PMID: 15466194. doi:10.1158/0008-5472.CAN-04-1364
  • Peitzsch C, Nathansen J, Schniewind SI, Schwarz F, Dubrovska A. Cancer stem cells in head and neck squamous cell carcinoma: identification, characterization and clinical implications. Cancers. 2019;11:616. PMID: 31052565. doi:10.3390/cancers11050616
  • Koh E-Y, You J-E, Jung S-H, Kim P-H. Biological Functions and Identification of novel biomarker expressed on the surface of breast cancer-derived cancer stem cells via proteomic analysis. Mol Cells. 2020;43:384–396. PMID: 32235022. doi:10.14348/molcells.2020.2230
  • Phi LTH, Sari IN, Yang Y-G, et al. Cancer Stem Cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923. PMID: 29681949. doi:10.1155/2018/5416923
  • Walcher L, Kistenmacher A-K, Suo H, et al. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280. PMID: 32849491. doi:10.3389/fimmu.2020.01280
  • Dalerba P, Dylla SJ, Park I-K, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104:10158–10163. PMID: 17548814. doi:10.1073/pnas.0703478104
  • Zhang -S-S, Huang Z-W, L-X L, J-J F, Xiao B. Identification of CD200+ colorectal cancer stem cells and their gene expression profile. Oncol Rep. 2016;36:2252–2260. PMID: 27574016. doi:10.3892/or.2016.5039
  • Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–768. PMID: 18784658. doi:10.1038/nrc2499
  • Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–567. PMID: 18371393. doi:10.1016/j.stem.2007.08.014
  • Jiang F, Qiu Q, Khanna A, et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 2009;7:330–338. PMID: 19276181. doi:10.1158/1541-7786.MCR-08-0393
  • Li T, Su Y, Mei Y, et al. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest. 2010;90:234–244. PMID: 20010854. doi:10.1038/labinvest.2009.127
  • Rasper M, Schäfer A, Piontek G, et al. Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol. 2010;12:1024–1033. PMID: 20627895. doi:10.1093/neuonc/noq070
  • Su Y, Qiu Q, Zhang X, et al. Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev. 2010;19:327–337. PMID: 20142235. doi:10.1158/1055-9965.EPI-09-0865
  • Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16:225–238. PMID: 25748930. doi:10.1016/j.stem.2015.02.015
  • Pearce DJ, Taussig D, Simpson C, et al. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells. 2005;23:752–760. PMID: 15917471. doi:10.1634/stemcells.2004-0292
  • Leng Z, Tao K, Xia Q, et al. Krüppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS One. 2013;8:e56082. PMID: 23418515. doi:10.1371/journal.pone.0056082
  • Noh KH, Kim BW, Song K-H, et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest. 2012;122:4077–4093. PMID: 23093782. doi:10.1172/JCI64057
  • Lu H, Lyu Y, Tran L, et al. HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells. Cell Rep. 2021;36:109757. PMID: 34592152. doi:10.1016/j.celrep.2021.109757
  • Leis O, Eguiara A, Lopez-Arribillaga E, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 2012;31:1354–1365. PMID: 21822303. doi:10.1038/onc.2011.338
  • Le Minh G, Esquea EM, Dhameliya TT, et al. Kruppel-like factor 8 regulates triple negative breast cancer stem cell-like activity. Front Oncol. 2023;13:1141834. PMID: 37152043. doi:10.3389/fonc.2023.1141834
  • Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7:339–348. PMID: 29071215. doi:10.15171/apb.2017.041
  • Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF. Hypoxia inducible factor-1α: its role in colorectal carcinogenesis and metastasis. Cancer Lett. 2015;366:11–18. PMID: 26116902. doi:10.1016/j.canlet.2015.06.005
  • Colwell N, Larion M, Giles AJ, et al. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro Oncol. 2017;19:887–896. PMID: 28339582. doi:10.1093/neuonc/now258
  • Seidel S, Garvalov BK, Wirta V, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain. 2010;133:983–995. PMID: 20375133. doi:10.1093/brain/awq042
  • Louka M, Boutou E, Bakou V, et al. DNA damage response/repair in cancer stem cells — potential vs controversies. In: Advances in DNA Repair. IntechOpen; 2015.
  • Ojha R, Bhattacharyya S, Singh SK. Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis. Biores Open Access. 2015;4:97–108. PMID: 26309786. doi:10.1089/biores.2014.0035
  • Chen K, Zhang C, Ling S, Wei R, Wang J, Xu X. The metabolic flexibility of quiescent CSC: implications for chemotherapy resistance. Cell Death Dis. 2021;12:835. PMID: 34482364. doi:10.1038/s41419-021-04116-6
  • Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). J Transl Sci. 2020;6:341. PMID: 35330670. doi:10.15761/jts.1000341
  • Yadav AK, Desai NS. Cancer stem cells: acquisition, characteristics, therapeutic implications, targeting strategies and future prospects. Stem Cell Rev Rep. 2019;15:331–355. PMID: 30993589. doi:10.1007/s12015-019-09887-2
  • Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–760. PMID: 17051156. doi:10.1038/nature05236
  • Fang DD, Cao J, Jani JP, et al. Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line. Front Med. 2013;7:462–476. PMID: 23820871. doi:10.1007/s11684-013-0270-6
  • Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327:542–545. PMID: 20110496. doi:10.1126/science.1180794
  • Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17:313–319. PMID: 21386835. doi:10.1038/nm.2304
  • Luo M, J-F L, Yang Q, et al. Stem cell quiescence and its clinical relevance. World J Stem Cells. 2020;12:1307–1326. PMID: 33312400. doi:10.4252/wjsc.v12.i11.1307
  • Aponte PM, Caicedo A. Stemness in Cancer: stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int. 2017;2017:5619472. PMID: 28473858. doi:10.1155/2017/5619472
  • Kurki P, Vanderlaan M, Dolbeare F, Gray J, Tan EM. Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res. 1986;166:209–219. PMID: 2874992. doi:10.1016/0014-4827(86)90520-3
  • Ye S, Ding Y-F, Jia W-H, et al. SET domain-containing protein 4 epigenetically controls breast cancer stem cell quiescence. Cancer Res. 2019;79:4729–4743. PMID: 31308046. doi:10.1158/0008-5472.CAN-19-1084
  • Gerdes J, Li L, Schlueter C, et al. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol. 1991;138:867–873. PMID: 2012175.
  • Kobayashi A, Okuda H, Xing F, et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011;208:2641–2655. PMID: 22124112. doi:10.1084/jem.20110840
  • Abravanel DL, Belka GK, Pan T, et al. Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy. J Clin Invest. 2015;125:2484–2496. PMID: 25961456. doi:10.1172/JCI74883
  • Nguyen DX, Chiang AC, Zhang XH-F, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138:51–62. PMID: 19576624. doi:10.1016/j.cell.2009.04.030
  • Yang A, Qin S, Schulte BA, Ethier SP, Tew KD, Wang GY. MYC Inhibition depletes cancer stem-like cells in triple-negative breast cancer. Cancer Res. 2017;77:6641–6650. PMID: 28951456. doi:10.1158/0008-5472.CAN-16-3452
  • Lee SH, Reed-Newman T, Anant S, Ramasamy TS. Regulatory role of quiescence in the biological function of cancer stem cells. Stem Cell Rev Rep. 2020;16:1185–1207. PMID: 32894403. doi:10.1007/s12015-020-10031-8
  • Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: an enigma for cancer therapeutic targeting. Adv Cancer Res. 2019;141:43–84. PMID: 30691685. doi:10.1016/bs.acr.2018.12.002
  • Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol. 2006;4:e83. PMID: 16509772. doi:10.1371/journal.pbio.0040083
  • Truskowski K, Amend SR, Pienta KJ. Dormant cancer cells: programmed quiescence, senescence, or both? Cancer Metastasis Rev. 2023;42:37–47. PMID: 36598661. doi:10.1007/s10555-022-10073-z
  • Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P. Tumor cell dormancy: threat or opportunity in the fight against cancer. Cancers. 2019;11:1207. PMID: 31430951. doi:10.3390/cancers11081207
  • Hedley BD, Chambers AF. Tumor dormancy and metastasis. Adv Cancer Res. 2009;102:67–101. PMID: 19595307. doi:10.1016/S0065-230X(09)02003-X
  • Manjili MH. Tumor dormancy and relapse: from a natural byproduct of evolution to a disease state. Cancer Res. 2017;77:2564–2569. PMID: 28507050. doi:10.1158/0008-5472.CAN-17-0068
  • Páez D, Labonte MJ, Bohanes P, et al. Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res. 2012;18:645–653. PMID: 22156560. doi:10.1158/1078-0432.CCR-11-2186
  • Mitra A, Mishra L, Li S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget. 2015;6:10697–10711. PMID: 25986923. doi:10.18632/oncotarget.4037
  • Cojoc M, Mäbert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol. 2015;31:16–27. PMID: 24956577. doi:10.1016/j.semcancer.2014.06.004
  • Kleffel S, Schatton T. Tumor dormancy and cancer stem cells: two sides of the same coin? Adv Exp Med Biol. 2013;734:145–179. PMID: 23143979. doi:10.1007/978-1-4614-1445-2_8
  • Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 2009;26:611–623. PMID: 19421880. doi:10.1007/s10585-009-9260-0
  • Lin W, Rajbhandari N, Liu C, et al. Dormant cancer cells contribute to residual disease in a model of reversible pancreatic cancer. Cancer Res. 2013;73:1821–1830. PMID: 23467612. doi:10.1158/0008-5472.CAN-12-2067
  • Gao M-Q, Choi Y-P, Kang S, Youn JH, Cho N-H. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010;29:2672–2680. PMID: 20190812. doi:10.1038/onc.2010.35
  • Roesch A, Fukunaga-Kalabis M, Schmidt EC, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141:583–594. PMID: 20478252. doi:10.1016/j.cell.2010.04.020
  • Zeuner A, Francescangeli F, Contavalli P, et al. Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer. Cell Death Differ. 2014;21:1877–1888. PMID: 25034785. doi:10.1038/cdd.2014.105
  • Holtz MS, Forman SJ, Bhatia R. Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia. 2005;19:1034–1041. PMID: 15815728. doi:10.1038/sj.leu.2403724
  • Zanoni M, Bravaccini S, Fabbri F, Arienti C. Emerging roles of aldehyde dehydrogenase isoforms in anti-cancer therapy resistance. Front Med. 2022;9:795762. PMID: 35299840. doi:10.3389/fmed.2022.795762
  • Clark DW, Palle K. Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets. Ann Transl Med. 2016;4:518. PMID: 28149880. doi:10.21037/atm.2016.11.82
  • Breitman TR, Selonick SE, Collins SJ. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid Proc Natl Acad Sci U S A. 1980;77(5):2936–2940. PMID: 6930676. doi:10.1073/pnas.77.5.2936
  • Lotan R. Different susceptibilities of human melanoma and breast carcinoma cell lines to retinoic acid-induced growth inhibition. Cancer Res. 1979;39(3):1014–1019. PMID: 427741.
  • Croker AK, Allan AL. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat. 2012;133(1):75–87. PMID: 21818590. doi:10.1007/s10549-011-1692-y
  • Chen Y-C, Chen Y-W, Hsu H-S, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 2009;385(3):307–313. PMID: 19450560. doi:10.1016/j.bbrc.2009.05.048
  • Safa AR. Resistance to cell death and its modulation in cancer stem cells. Critical Reviews™ in Oncogenesis. 2016;21(3–4):203–219. PMID: 27915972. doi:10.1615/CritRevOncog.2016016976
  • Yang L, Ren Y, Yu X, et al. ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol. 2014;27(5):775–783. PMID: 24201124. doi:10.1038/modpathol.2013.189
  • Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018–11032. PMID: 26783961. doi:10.18632/oncotarget.6920
  • He X, Gonzalez V, Tsang A, Thompson J, Tsang TC, Harris DT. Differential gene expression profiling of CD34 + CD133 + umbilical cord blood hematopoietic stem progenitor cells. Stem Cells Dev. 2005;14(2):188–198. PMID: 15910245. doi:10.1089/scd.2005.14.188
  • Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, Weissman IL. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet. 2005;1(3):e28. PMID: 16151515. doi:10.1371/journal.pgen.0010028
  • Eirew P, Kannan N, Knapp DJHF, et al. Aldehyde dehydrogenase activity is a biomarker of primitive normal human mammary luminal cells. Stem Cells. 2012;30(2):344–348. PMID: 22131125. doi:10.1002/stem.1001
  • Sahovic EA, Colvin M, Hilton J, Ogawa M. Role for aldehyde dehydrogenase in survival of progenitors for murine blast cell colonies after treatment with 4-hydroperoxycyclophosphamide in vitro. Cancer Res. 1988;48(5):1223–1226.
  • Bunting KD, Townsend AJ. Protection by transfected rat or human class 3 aldehyde dehydrogenases against the cytotoxic effects of oxazaphosphorine alkylating agents in hamster V79 cell lines. J Biol Chem. 1996;271(20):11891–11896. doi:10.1074/jbc.271.20.11891
  • Safa AR. Drug and apoptosis resistance in cancer stem cells (CSCs): a puzzle with many pieces. Cancer Drug Resist. 2022;5(4):850–872. PMID: 36627897. doi:10.20517/cdr.2022.20
  • Safa AR. c-FLIP, a master anti-apoptotic regulator. Exp Oncol. 2012;34(3):176–184. PMID: 23070002.
  • Stantic M, Dong L-F, Zobalova R, Prokopova K, Neuzil J. Cancer cells with high expression of CD133 exert FLIP upregulation and resistance to TRAIL-induced apoptosis. Biofactors. 2008;34(3):231–235. PMID: 19734124. doi:10.1002/biof.5520340307
  • Zobalova R, McDermott L, Stantic M, Prokopova K, Dong L-F, Neuzil J. CD133-positive cells are resistant to TRAIL due to up-regulation of FLIP. Biochem Biophys Res Commun. 2008;373(4):567–571. PMID: 18590703. doi:10.1016/j.bbrc.2008.06.073
  • Ding L, Yuan C, Wei F, et al. Cisplatin restores TRAIL apoptotic pathway in glioblastoma-derived stem cells through up-regulation of DR5 and down-regulation of c-FLIP. Cancer Invest. 2011;29(8):511–520. PMID: 21877938. doi:10.3109/07357907.2011.605412
  • Gampa SC. Nano-TRAIL: a promising path to cancer therapy. Cancer Drug Resist. 2023;6(1):78–102. PMID: 37065863. doi:10.20517/cdr.2022.82
  • Ivanisenko NV, Seyrek K, Hillert-Richter LK, et al. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer. 2022;8:190–209. PMID: 34973957. doi:10.1016/j.trecan.2021.12.002
  • Yoon MJ, Kang YJ, Kim IY, et al. Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation. Carcinogenesis. 2013;34:1918–1928. PMID: 23615398. doi:10.1093/carcin/bgt137
  • Varfolomeev E, Goncharov T, Vucic D. Roles of c-IAP proteins in TNF receptor family activation of NF-κB signaling. Methods Mol Biol. 2015;1280:269–282. PMID: 25736754. doi:10.1007/978-1-4939-2422-6_15
  • Ji J, Yu Y, Z-L L, et al. XIAP Limits autophagic degradation of Sox2 and Is a therapeutic target in nasopharyngeal carcinoma stem cells. Theranostics. 2018;8:1494–1510. PMID: 29556337. doi:10.7150/thno.21717
  • Wang Y-H, Scadden DT. Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep. 2015;16:1084–1098. PMID: 26253117. doi:10.15252/embr.201439675
  • Lee M-R, S-Y J, Mia-Jan K, Cho M-Y. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression. Biochem Biophys Res Commun. 2015;463:229–234. PMID: 26002465. doi:10.1016/j.bbrc.2015.05.031
  • Hu Y, Yagüe E, Zhao J, et al. Sabutoclax, pan-active BCL-2 protein family antagonist, overcomes drug resistance and eliminates cancer stem cells in breast cancer. Cancer Lett. 2018;423:47–59. PMID: 29496539. doi:10.1016/j.canlet.2018.02.036
  • Xu M, Gong A, Yang H, et al. Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44(+)/Musashi-1(+) gastric cancer stem cells. Cancer Lett. 2015;369:124–133. PMID: 26276718. doi:10.1016/j.canlet.2015.08.005
  • Wang J, Liu X, Jiang Z, et al. A novel method to limit breast cancer stem cells in states of quiescence, proliferation or differentiation: use of gel stress in combination with stem cell growth factors. Oncol Lett. 2016;12:1355–1360. PMID: 27446437. doi:10.3892/ol.2016.4757
  • Veringa SJE, Biesmans D, van Vuurden DG, et al. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS One. 2013;8:e61512. PMID: 23637844. doi:10.1371/journal.pone.0061512
  • Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18:452–464. PMID: 29643473. doi:10.1038/s41568-018-0005-8
  • Arneth B. Tumor Microenvironment. Medicina. 2019;56:15. PMID: 31906017. doi:10.3390/medicina56010015
  • Prieto-Vila M, Takahashi R-U, Usuba W, Kohama I, Ochiya T. Drug Resistance Driven by Cancer Stem Cells and Their Niche. Int J Mol Sci. 2017;18:2574. PMID: 29194401. doi:10.3390/ijms18122574
  • Li Y, Wang Z, Ajani JA, Song S. Drug resistance and Cancer stem cells. Cell Commun Signal. 2021;19:19. PMID: 33588867. doi:10.1186/s12964-020-00627-5
  • Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–783. PMID: 19194462. doi:10.1038/nature07733
  • Desai A, Webb B, Gerson SL. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Radiother Oncol. 2014;110:538–545. PMID: 24440048. doi:10.1016/j.radonc.2013.10.040
  • Mathews LA, Cabarcas SM, Hurt EM, Zhang X, Jaffee EM, Farrar WL. Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas. 2011;40:730–739. PMID: 21633318. doi:10.1097/MPA.0b013e31821ae25b
  • Carruthers RD, Ahmed SU, Ramachandran S, et al. Replication stress drives constitutive activation of the DNA damage response and radioresistance in glioblastoma stem-like cells. Cancer Res. 2018;78:5060–5071. PMID: 29976574. doi:10.1158/0008-5472.CAN-18-0569
  • Wang Q-E. DNA damage responses in cancer stem cells: implications for cancer therapeutic strategies. World J Biol Chem. 2015;6:57–64. PMID: 26322164. doi:10.4331/wjbc.v6.i3.57
  • Blanpain C, Mohrin M, Sotiropoulou PA, Passegué E. DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell. 2011;8:16–29. PMID: 21211780. doi:10.1016/j.stem.2010.12.012
  • Liu Y, Zheng C, Huang Y, He M, Xu WW, Li B. Molecular mechanisms of chemo‐ and radiotherapy resistance and the potential implications for cancer treatment. MedComm. 2021;2:315–340. PMID: 34766149. doi:10.1002/mco2.55
  • Cui Q, Wang J-Q, Assaraf YG, et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat. 2018;41:1–25. PMID: 30471641. doi:10.1016/j.drup.2018.11.001
  • Hwang IT, Chung YM, Kim JJ, et al. Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem Biophys Res Commun. 2007;359:304–310. PMID: 17537404. doi:10.1016/j.bbrc.2007.05.088
  • Kim E-K, Jang M, Song M-J, Kim D, Kim Y, Jang HH. Redox-mediated mechanism of chemoresistance in cancer cells. Antioxidants. 2019;8:471. PMID: 31658599. doi:10.3390/antiox8100471
  • Shen Y, Yang J, Zhao J, Xiao C, Xu C, Xiang Y. The switch from ER stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 signals: a survival mechanism in methotrexate-resistant choriocarcinoma cells. Exp Cell Res. 2015;334:207–218. PMID: 25912909. doi:10.1016/j.yexcr.2015.04.010
  • Alimbetov D, Askarova S, Umbayev B, Davis T, Kipling D. Pharmacological targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in chemoresistance of cancer cells. Int J Mol Sci. 2018;19:1690. PMID: 29882812. doi:10.3390/ijms19061690
  • Bailey HH. L-S,R-buthionine sulfoximine: historical development and clinical issues. Chem Biol Interact. 1998;111–112:239–254. PMID: 9679558. doi:10.1016/s0009-2797(97)00164-6
  • Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:157. PMID: 31711497. doi:10.1186/s12943-019-1089-9
  • O’Reilly D, Johnson P, Buchanan PJ. Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer. Steroids. 2019;152:108497. PMID: 31521707. doi:10.1016/j.steroids.2019.108497
  • Qian J, Rankin EB. Hypoxia-induced phenotypes that mediate tumor heterogeneity. Adv Exp Med Biol. 2019;1136:43–55. PMID: 31201715. doi:10.1007/978-3-030-12734-3_3
  • Yan Y, Liu F, Han L, et al. HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways. J Exp Clin Cancer Res. 2018;37:256. PMID: 30340507. doi:10.1186/s13046-018-0925-x
  • Yang Y, Li X, Wang T, Guo Q, Xi T, Zheng L. Emerging agents that target signaling pathways in cancer stem cells. J Hematol Oncol. 2020;13:60. PMID: 32456660. doi:10.1186/s13045-020-00901-6
  • Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol. 2020;10:1533. PMID: 32984007. doi:10.3389/fonc.2020.01533
  • Guerra F, Arbini AA, Moro L. Mitochondria and cancer chemoresistance. Biochim Biophys Acta Bioenerg. 2017;1858:686–699. PMID: 28161329. doi:10.1016/j.bbabio.2017.01.012
  • Bokil A, Sancho P. Mitochondrial determinants of chemoresistance. Cancer Drug Resist. 2019;2:634–646. PMID: 35582564. doi:10.20517/cdr.2019.46
  • Porporato PE, Filigheddu N, Pedro JMB-S, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–280. PMID: 29219147. doi:10.1038/cr.2017.155
  • Jin P, Jiang J, Zhou L, et al. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol. 2022;15:97. PMID: 35851420. doi:10.1186/s13045-022-01313-4
  • Klein K, He K, Younes AI, et al. Role of mitochondria in cancer immune evasion and potential therapeutic approaches. Front Immunol. 2020;11:573326. PMID: 33178201. doi:10.3389/fimmu.2020.573326
  • Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P. Mitochondria in cancer. Cell Stress. 2020;4:114–146. PMID: 32548570. doi:10.15698/cst2020.06.221
  • Bertram R, Gram Pedersen M, Luciani DS, Sherman A. A simplified model for mitochondrial ATP production. J Theor Biol. 2006;243:575–586. PMID: 16945388. doi:10.1016/j.jtbi.2006.07.019
  • Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal. 2012;16:1323–1367. PMID: 22146081. doi:10.1089/ars.2011.4123
  • Tait SWG, Green DR. Mitochondria and cell signalling. J Cell Sci. 2012;125:807–815. PMID: 22448037. doi:10.1242/jcs.099234
  • Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun. 2017;482:426–431. PMID: 28212726. doi:10.1016/j.bbrc.2016.11.088
  • Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20:745–754. PMID: 29950572. doi:10.1038/s41556-018-0124-1
  • Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016;166:555–566. PMID: 27471965. doi:10.1016/j.cell.2016.07.002
  • Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci. 2007;120:4025–4034. PMID: 17971411. doi:10.1242/jcs.016972
  • Wu Q, Tsai H-I, Zhu H, Wang D. The entanglement between mitochondrial DNA and Tumor metastasis. Cancers. 2022;14:1862. PMID: 35454769. doi:10.3390/cancers14081862
  • Liu Z, Shan S, Yuan Z, et al Mitophagy bridges DNA sensing with metabolic adaption to expand lung cancer stem-like cells. EMBO Rep. 2023;24:e54006. PMID: 36416244. doi:10.15252/embr.202154006
  • Masuike Y, Tanaka K, Makino T, et al. Esophageal squamous cell carcinoma with low mitochondrial copy number has mesenchymal and stem-like characteristics, and contributes to poor prognosis. PLoS One. 2018;13:e0193159. PMID: 29447301. doi:10.1371/journal.pone.0193159
  • Armstrong L, Tilgner K, Saretzki G, et al. Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells. 2010;28:661–673. PMID: 20073085. doi:10.1002/stem.307
  • Paliwal S, Fiumera HL, Mohanty S. Stem cell plasticity and regenerative potential regulation through Ca2+-mediated mitochondrial nuclear crosstalk. Mitochondrion. 2021;56:1–14. PMID: 33059088. doi:10.1016/j.mito.2020.10.002
  • Cho YM, Kwon S, Pak YK, et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun. 2006;348:1472–1478. PMID: 16920071. doi:10.1016/j.bbrc.2006.08.020
  • Spurlock B, Gupta P, Basu MK, et al. New quantitative approach reveals heterogeneity in mitochondrial structure-function relations in tumor-initiating cells. J Cell Sci. 2019;132:jcs230755. PMID: 30910831. doi:10.1242/jcs.230755
  • Chakrabarty RP, Chandel NS. Mitochondria as Signaling organelles control mammalian stem cell fate. Cell Stem Cell. 2021;28:394–408. PMID: 33667360. doi:10.1016/j.stem.2021.02.011
  • Zheng -X-X, Chen -J-J, Sun Y-B, Chen T-Q, Wang J, S-C Y. Mitochondria in cancer stem cells: achilles heel or hard armor. Trends Cell Biol. 2023;33:708–727. PMID: 37137792. doi:10.1016/j.tcb.2023.03.009
  • Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY. Hypoxia-Inducible Factors and Cancer. Curr Sleep Med Rep. 2017;3:1–10. PMID: 28944164. doi:10.1007/s40675-017-0062-7
  • Mu X, Zhao T, Xu C, et al. Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget. 2017;8:13174–13185. PMID: 28061458. doi:10.18632/oncotarget.14485
  • van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 2008;412:477–484. PMID: 18393939. doi:10.1042/BJ20080476
  • Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7:77–85. PMID: 15652751. doi:10.1016/j.ccr.2004.11.022
  • De Francesco EM, Sotgia F, Lisanti MP. Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J. 2018;475:1611–1634. PMID: 29743249. doi:10.1042/BCJ20170164
  • García-Heredia JM, Carnero A. Role of mitochondria in cancer stem cell resistance. Cells. 2020;9:1693. PMID: 32679735. doi:10.3390/cells9071693
  • Shiota T, Traven A, Lithgow T. Mitochondrial biogenesis: cell-cycle-dependent investment in making mitochondria. Curr Biol. 2015;25:R78–80. PMID: 25602310. doi:10.1016/j.cub.2014.12.006
  • Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84. PMID: 20533901. doi:10.1042/bse0470069
  • Praharaj PP, Panigrahi DP, Bhol CS, et al. Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: a potential target for anti-CSC cancer therapy. Cancer Lett. 2021;498:217–228. PMID: 33186655. doi:10.1016/j.canlet.2020.10.036
  • Dominy JE, Puigserver P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol. 2013;5:a015008. PMID: 23818499. doi:10.1101/cshperspect.a015008
  • Liu T, Ma Q, Li W, Hu Y, Yang J, Yao Q. Ubiquilin 1 suppresses the cancer stem cell-like traits of non-small cell lung cancer cells by regulating reactive oxygen species homeostasis. Bioengineered. 2021;12:7143–7155. PMID: 34546848. doi:10.1080/21655979.2021.1979353
  • X-Q Y, Li Q, Wang G-H, et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer. 2011;129:820–831. PMID: 21520032. doi:10.1002/ijc.25944
  • Mihaylova MM, Shaw RJ. The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy, & metabolism. Nat Cell Biol. 2011;13:1016–1023. PMID: 21892142. doi:10.1038/ncb2329
  • Ryoo I-G, Choi B-H, S-K K, Kwak M-K. High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: implications for cancer stem cell resistance. Redox Biol. 2018;17:246–258. PMID: 29729523. doi:10.1016/j.redox.2018.04.015
  • Zhu J, Wang H, Sun Q, et al. Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer. 2013;13:380. PMID: 23937621. doi:10.1186/1471-2407-13-380
  • Jia Y, Chen J, Zhu H, Jia Z-H, Cui M-H. Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/Bmi-1 genes. Oncol Rep. 2015;34:2296–2304. PMID: 26324021. doi:10.3892/or.2015.4214
  • Kim B, Jung JW, Jung J, et al. PGC1α induced by reactive oxygen species contributes to chemoresistance of ovarian cancer cells. Oncotarget. 2017;8:60299–60311. PMID: 28947972. doi:10.18632/oncotarget.19140
  • Sancho P, Burgos-Ramos E, Tavera A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22:590–605. PMID: 26365176. doi:10.1016/j.cmet.2015.08.015
  • Lee K-M, Giltnane JM, Balko JM, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab. 2017;26:633–647.e7. PMID: 28978427. doi:10.1016/j.cmet.2017.09.009
  • Chen C-L, Uthaya Kumar DB, Punj V, et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab. 2016;23:206–219. PMID: 26724859. doi:10.1016/j.cmet.2015.12.004
  • Murakami A, Takahashi F, Nurwidya F, et al. Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor. PLoS One. 2014;9:e86459. PMID: 24489728. doi:10.1371/journal.pone.0086459
  • Kim I-G, Lee J-H, Kim S-Y, Heo C-K, Kim R-K, Cho E-W. Targeting therapy-resistant lung cancer stem cells via disruption of the AKT/TSPYL5/PTEN positive-feedback loop. Commun Biol. 2021;4:778. PMID: 34163000. doi:10.1038/s42003-021-02303-x
  • Bleau A-M, Hambardzumyan D, Ozawa T, et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4:226–235. PMID: 19265662. doi:10.1016/j.stem.2009.01.007
  • Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci U S A. 2014;111:E5429–5438. PMID: 25453096. doi:10.1073/pnas.1421438111
  • Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res. 2016;18:55. PMID: 27220421. doi:10.1186/s13058-016-0712-6
  • Gao C, Shen Y, Jin F, Miao Y, Qiu X. Cancer stem cells in small cell lung cancer cell line H446: higher dependency on oxidative phosphorylation and mitochondrial substrate-level phosphorylation than non-stem cancer cells. PLoS One. 2016;11:e0154576. PMID: 27167619. doi:10.1371/journal.pone.0154576
  • Pastò A, Bellio C, Pilotto G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget. 2014;5:4305–4319. PMID: 24946808. doi:10.18632/oncotarget.2010
  • Vlashi E, Lagadec C, Vergnes L, et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A. 2011;108:16062–16067. PMID: 21900605. doi:10.1073/pnas.1106704108
  • Janiszewska M, Suvà ML, Riggi N, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 2012;26:1926–1944. PMID: 22899010. doi:10.1101/gad.188292.112
  • Han S, Wei R, Zhang X, et al. CPT1A/2-mediated FAO enhancement-a metabolic target in radioresistant breast cancer. Front Oncol. 2019;9:1201. PMID: 31803610. doi:10.3389/fonc.2019.01201
  • Wang T, Fahrmann JF, Lee H, et al. JAK/STAT3-regulated Fatty Acid β-Oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 2018;27:136–150.e5. PMID: 29249690. doi:10.1016/j.cmet.2017.11.001
  • Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102. PMID: 31900386. doi:10.1038/s41467-019-13668-3
  • Yi M, Li J, Chen S, et al. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res. 2018;37:118. PMID: 29907133. doi:10.1186/s13046-018-0784-5
  • Camarda R, Zhou AY, Kohnz RA, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22:427–432. PMID: 26950360. doi:10.1038/nm.4055
  • Cardaci S, Ciriolo MR. TCA cycle defects and cancer: when metabolism tunes redox state. Int J Cell Biol. 2012;2012:161837. PMID: 22888353. doi:10.1155/2012/161837
  • Ghosh P, Vidal C, Dey S, Zhang L. Mitochondria targeting as an effective strategy for cancer therapy. Int J Mol Sci. 2020;21:3363. PMID: 32397535. doi:10.3390/ijms21093363
  • Sciacovelli M, Frezza C. Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med. 2016;100:175–181. PMID: 27117029. doi:10.1016/j.freeradbiomed.2016.04.025
  • Xiao M, Yang H, Xu W, et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26:1326–1338. PMID: 22677546. doi:10.1101/gad.191056.112
  • Gasparre G, Kurelac I, Capristo M, et al. A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function. Cancer Res. 2011;71:6220–6229. PMID: 21852384. doi:10.1158/0008-5472.CAN-11-1042
  • Rohle D, Popovici-Muller J, Palaskas N, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340:626–630. PMID: 23558169. doi:10.1126/science.1236062
  • Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018;62:341–360. PMID: 30030364. doi:10.1042/EBC20170104
  • Ferguson SM, De Camilli P. Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol. 2012;13:75–88. PMID: 22233676. doi:10.1038/nrm3266
  • Kraus F, Ryan MT. The constriction and scission machineries involved in mitochondrial fission. J Cell Sci. 2017;130:2953–2960. PMID: 28842472. doi:10.1242/jcs.199562
  • Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505–531. PMID: 26667075. doi:10.1146/annurev-physiol-021115-105011
  • Zhao J, Zhang J, Yu M, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32:4814–4824. PMID: 23128392. doi:10.1038/onc.2012.494
  • Chen H, Chan DC. Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab. 2017;26:39–48. PMID: 28648983. doi:10.1016/j.cmet.2017.05.016
  • Wei M, Nurjanah U, Li J, et al. YY2-DRP1 axis regulates mitochondrial fission and determines cancer stem cell asymmetric division. Adv Sci. 2023:e2207349. PMID: 37300334. doi:10.1002/advs.202207349
  • Xie Q, Wu Q, Horbinski CM, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501–510. PMID: 25730670. doi:10.1038/nn.3960
  • Peiris-Pagès M, Bonuccelli G, Sotgia F, Lisanti MP. Mitochondrial fission as a driver of stemness in tumor cells: mDIVI1 inhibits mitochondrial function, cell migration and cancer stem cell (CSC) signalling. Oncotarget. 2018;9:13254–13275. PMID: 29568355. doi:10.18632/oncotarget.24285
  • Liu Z, Lei J, Wu T, et al. Lipogenesis promotes mitochondrial fusion and maintains cancer stemness in human NSCLC. JCI Insight. 2023;8:e158429. PMID: 36809297. doi:10.1172/jci.insight.158429
  • Civenni G, Bosotti R, Timpanaro A, et al. Epigenetic control of mitochondrial fission enables self-renewal of stem-like tumor cells in human prostate cancer. Cell Metab. 2019;30:303–318.e6. PMID: 31130467. doi:10.1016/j.cmet.2019.05.004
  • Zhou T-J, Zhang S-L, C-Y H, et al. Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related protein 1. Theranostics. 2017;7:1389–1406. PMID: 28435473. doi:10.7150/thno.17647
  • Tang M, Yang M, Wu G, et al. Epigenetic induction of mitochondrial fission is required for maintenance of liver cancer-initiating cells. Cancer Res. 2021;81:3835–3848. PMID: 34049973. doi:10.1158/0008-5472.CAN-21-0436
  • Cai J, Wang J, Huang Y, et al. ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells. Cell Death Dis. 2016;7:e2459. PMID: 27831567. doi:10.1038/cddis.2016.370
  • Cagin U, Duncan OF, Gatt AP, Dionne MS, Sweeney ST, Bateman JM. Mitochondrial retrograde signaling regulates neuronal function. Proc Natl Acad Sci U S A. 2015;112:E6000–6009. PMID: 26489648. doi:10.1073/pnas.1505036112
  • da Cunha FM, Torelli NQ, Kowaltowski AJ. Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxid Med Cell Longev. 2015;2015:482582. PMID: 26583058. doi:10.1155/2015/482582
  • Rugarli EI, Langer T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J. 2012;31:1336–1349. PMID: 22354038. doi:10.1038/emboj.2012.38
  • Biswas G, Adebanjo OA, Freedman BD, et al. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J. 1999;18:522–533. PMID: 9927412. doi:10.1093/emboj/18.3.522
  • Arnould T, Michel S, Renard P. Mitochondria retrograde signaling and the upr mt: where are we in mammals? Int J Mol Sci. 2015;16:18224–18251. PMID: 26258774. doi:10.3390/ijms160818224
  • Jiang H-L, Sun H-F, Gao S-P, et al. SSBP1 suppresses TGFβ-driven epithelial-to-mesenchymal transition and metastasis in triple-negative breast cancer by regulating mitochondrial retrograde signaling. Cancer Res. 2016;76:952–964. PMID: 26676758. doi:10.1158/0008-5472.CAN-15-1630
  • Arbini AA, Guerra F, Greco M, et al. Mitochondrial DNA depletion sensitizes cancer cells to PARP inhibitors by translational and post-translational repression of BRCA2. Oncogenesis. 2013;2:e82. PMID: 24336406. doi:10.1038/oncsis.2013.45
  • Amuthan G, Biswas G, Ananadatheerthavarada HK, Vijayasarathy C, Shephard HM, Avadhani NG. Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene. 2002;21:7839–7849. PMID: 12420221. doi:10.1038/sj.onc.1205983
  • Guha M, Srinivasan S, Ruthel G, et al. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene. 2014;33:5238–5250. PMID: 24186204. doi:10.1038/onc.2013.467
  • Gonzalez-Sanchez E, Marin JJG, Perez MJ. The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol Pharmaceutics. 2014;11:1856–1868. doi:10.1021/mp400732p
  • Shen L, Zhou L, Xia M, et al. PGC1α regulates mitochondrial oxidative phosphorylation involved in cisplatin resistance in ovarian cancer cells via nucleo-mitochondrial transcriptional feedback. Exp Cell Res. 2021;398:112369. PMID: 33220258. doi:10.1016/j.yexcr.2020.112369
  • Porporato PE, Payen VL, Pérez-Escuredo J, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8:754–766. PMID: 25066121. doi:10.1016/j.celrep.2014.06.043
  • Ding W-X, Yin X-M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393:547–564. PMID: 22944659. doi:10.1515/hsz-2012-0119
  • Xie Y, Liu J, Kang R, Tang D. Mitophagy receptors in tumor biology. Front Cell Dev Biol. 2020;8:594203. PMID: 33262988. doi:10.3389/fcell.2020.594203
  • Yan C, Li T-S. Dual role of mitophagy in cancer drug resistance. Anticancer Res. 2018;38:617–621. PMID: 29374684. doi:10.21873/anticanres.12266
  • Arena G, Valente EM. PINK1 in the limelight: multiple functions of an eclectic protein in human health and disease. J Pathol. 2017;241:251–263. PMID: 27701735. doi:10.1002/path.4815
  • Durcan TM, Fon EA. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 2015;29:989–999. PMID: 25995186. doi:10.1101/gad.262758.115
  • Song L, Huang Y, Hou X, et al. PINK1/Parkin-mediated mitophagy promotes resistance to sonodynamic therapy. Cell Physiol Biochem. 2018;49:1825–1839. PMID: 30231241. doi:10.1159/000493629
  • Denisenko TV, Gogvadze V, Zhivotovsky B. Mitophagy in carcinogenesis and cancer treatment. Discov Oncol. 2021;12:58. PMID: 35201480. doi:10.1007/s12672-021-00454-1
  • Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–2581. PMID: 19273585. doi:10.1128/MCB.00166-09
  • Liu K, Lee J, Kim JY, et al. Mitophagy Controls the Activities of Tumor Suppressor p53 to Regulate Hepatic Cancer Stem Cells. Mol Cell. 2017;68:281–292.e5. PMID: 29033320. doi:10.1016/j.molcel.2017.09.022
  • Im E, Yoo L, Hyun M, Shin WH, Chung KC. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin. Open Biol. 2016;6:160193. PMID: 27534820. doi:10.1098/rsob.160193
  • Jung J, Zhang Y, Celiku O, et al. Mitochondrial NIX promotes tumor survival in the hypoxic niche of glioblastoma. Cancer Res. 2019;79:5218–5232. PMID: 31488423. doi:10.1158/0008-5472.CAN-19-0198
  • Guan Y, Wang Y, Li B, et al. Mitophagy in carcinogenesis, drug resistance and anticancer therapeutics. Cancer Cell Int. 2021;21:350. PMID: 34225732. doi:10.1186/s12935-021-02065-w
  • Katajisto P, Döhla J, Chaffer CL, et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science. 2015;348:340–343. PMID: 25837514. doi:10.1126/science.1260384
  • Smith AG, Macleod KF. Autophagy, cancer stem cells and drug resistance. J Pathol. 2019;247:708–718. PMID: 30570140. doi:10.1002/path.5222
  • Shen Y-A, Wang C-Y, Hsieh Y-T, Chen Y-J, Wei Y-H. Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle. 2015;14:86–98. PMID: 25483072. doi:10.4161/15384101.2014.974419
  • Luo M, Shang L, Brooks MD, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab. 2018;28:69–86.e6. PMID: 29972798. doi:10.1016/j.cmet.2018.06.006
  • O’Neill S, Porter RK, McNamee N, Martinez VG, O’Driscoll L. 2-Deoxy-D-Glucose inhibits aggressive triple-negative breast cancer cells by targeting glycolysis and the cancer stem cell phenotype. Sci Rep. 2019;9:3788. PMID: 30846710. doi:10.1038/s41598-019-39789-9
  • Naik PP, Mukhopadhyay S, Panda PK, et al. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD44, ABCB1 and ADAM17 in oral squamous cell carcinoma. Cell Prolif. 2018;51:e12411. PMID: 29171106. doi:10.1111/cpr.12411
  • Yan C, Luo L, Guo C-Y, et al. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells. Cancer Lett. 2017;388:34–42. PMID: 27913197. doi:10.1016/j.canlet.2016.11.018
  • Lopez J, Tait SWG. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 2015;112:957–962. PMID: 25742467. doi:10.1038/bjc.2015.85
  • Dlugosz PJ, Billen LP, Annis MG, et al. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J. 2006;25:2287–2296. PMID: 16642033. doi:10.1038/sj.emboj.7601126
  • Safa AR, Pollok KE. Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy. Cancers. 2011;3:1639–1671. PMID: 22348197. doi:10.3390/cancers3021639
  • Buccarelli M, D’Alessandris QG, Matarrese P, et al. Elesclomol-induced increase of mitochondrial reactive oxygen species impairs glioblastoma stem-like cell survival and tumor growth. J Exp Clin Cancer Res. 2021;40:228. PMID: 34253243. doi:10.1186/s13046-021-02031-4