265
Views
15
CrossRef citations to date
0
Altmetric
Review

Alternating Hemiplegia of Childhood: Understanding the Genotype–Phenotype Relationship of ATP1A3 Variations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 71-81 | Published online: 30 Mar 2020

References

  • Verret S, Steele JC. Alternating hemiplegia in childhood: a report of eight patients with complicated migraine beginning in infancy. Pediatrics. 1971;47(4):675–680.
  • Krägeloh I, Aicardi J. Alternating hemiplegia in infants: report of five cases. Dev Med Child Neurol. 1980;22(6):784–791. doi:10.1111/j.1469-8749.1980.tb03746.x
  • Bourgeois M, Aicardi J, Goutières F. Alternating hemiplegia of childhood. J Pediatr. 1993;122(5 Pt 1):673–679. doi:10.1016/S0022-3476(06)80003-X
  • Viollet L, Glusman G, Murphy KJ, et al. Alternating hemiplegia of childhood: retrospective genetic study and genotype-phenotype correlations in 187 subjects from the US AHCF registry. PLoS One. 2015;10(5):e0127045. doi:10.1371/journal.pone.0127045
  • Panagiotakaki E, Gobbi G, Neville B, et al. Evidence of a non-progressive course of alternating hemiplegia of childhood: study of a large cohort of children and adults. Brain. 2010;133(Pt 12):3598–3610. doi:10.1093/brain/awq295
  • Sweney MT, Silver K, Gerard-Blanluet M, et al. Alternating hemiplegia of childhood: early characteristics and evolution of a neurodevelopmental syndrome. Pediatrics. 2009;123(3):e534–e541. doi:10.1542/peds.2008-2027
  • Rosewich H, Sweney MT, DeBrosse S, et al. Research conference summary from the 2014 international task force on ATP1A3-related disorders. Neurol Genet. 2017;3(2):e139. doi:10.1212/NXG.0000000000000139
  • Heinzen EL, Swoboda KJ, Hitomi Y, et al. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet. 2012;44(9):1030–1034. doi:10.1038/ng.2358
  • Rosewich H, Thiele H, Ohlenbusch A, et al. Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol. 2012;11(9):764–773. doi:10.1016/S1474-4422(12)70182-5
  • Ishii A, Saito Y, Mitsui J, et al. Identification of ATP1A3 mutations by exome sequencing as the cause of alternating hemiplegia of childhood in Japanese patients. PLoS One. 2013;8(2):e56120. doi:10.1371/journal.pone.0056120
  • de Carvalho Aguiar P, Sweadner KJ, Penniston JT, et al. Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron. 2004;43(2):169–175. doi:10.1016/j.neuron.2004.06.028
  • Heimer G, Sadaka Y, Israelian L, et al. CAOS-episodic cerebellar ataxia, areflexia, optic atrophy, and sensorineural hearing loss: a third allelic disorder of the ATP1A3 gene. J Child Neurol. 2015;30(13):1749–1756. doi:10.1177/0883073815579708
  • Demos MK, van Karnebeek CD, Ross CJ, et al. A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis. 2014;9:15. doi:10.1186/1750-1172-9-15
  • Paciorkowski AR, McDaniel SS, Jansen LA, et al. Novel mutations in ATP1A3 associated with catastrophic early life epilepsy, episodic prolonged apnea, and postnatal microcephaly. Epilepsia. 2015;56(3):422–430. doi:10.1111/epi.12914
  • Marzin P, Mignot C, Dorison N, et al. Early-onset encephalopathy with paroxysmal movement disorders and epileptic seizures without hemiplegic attacks: about three children with novel ATP1A3 mutations. Brain Dev. 2018;40(9):768–774. doi:10.1016/j.braindev.2018.05.008
  • Dard R, Mignot C, Durr A, et al. Relapsing encephalopathy with cerebellar ataxia related to an ATP1A3 mutation. Dev Med Child Neurol. 2015;57(12):1183–1186. doi:10.1111/dmcn.12927
  • Sabouraud P, Riquet A, Spitz M-A, et al. Relapsing encephalopathy with cerebellar ataxia are caused by variants involving p.Arg756 in ATP1A3. Eur J Paediatr Neurol. 2019;23(3):448–455. doi:10.1016/j.ejpn.2019.02.004
  • Brashear A, Sweadner KJ, Cook JF, et al. ATP1A3-Related Neurologic Disorders. 2008 Feb 7 [Updated 2018 Feb 22]. In: Adam MP, Ardinger HH, Pagon RA, et al, editors. GeneReview® [Internet]. Seattle, WA: University of Washington, Seattle; 1993–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1115/.
  • Carecchio M, Zorzi G, Ragona F, Zibordi F, Nardocci N. ATP1A3-related disorders: an update. Eur J Paediatr Neurol. 2018;22(2):257–263. doi:10.1016/j.ejpn.2017.12.009
  • Heinzen EL, Arzimanoglou A, Brashear A, et al. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol. 2014;13(5):503–514. doi:10.1016/S1474-4422(14)70011-0
  • Anselm IA, Sweadner KJ, Gollamudi S, Ozelius LJ, Darras BT. Rapid-onset dystonia-parkinsonism in a child with a novel atp1a3 gene mutation. Neurology. 2009;73(5):400–401. doi:10.1212/WNL.0b013e3181b04acd
  • Kanemasa H, Fukai R, Sakai Y, et al. De novo p.Arg756Cys mutation of ATP1A3 causes an atypical form of alternating hemiplegia of childhood with prolonged paralysis and choreoathetosis. BMC Neurol. 2016;16:174. doi:10.1186/s12883-016-0680-6
  • Pittock SJ, Joyce C, O’Keane V, et al. Rapid-onset dystonia-parkinsonism: a clinical and genetic analysis of a new kindred. Neurology. 2000;55(7):991–995. doi:10.1212/WNL.55.7.991
  • Jaffer F, Fawcett K, Sims D, et al. Familial childhood-onset progressive cerebellar syndrome associated with the ATP1A3 mutation. Neurol Genet. 2017;3(2):e145. doi:10.1212/NXG.0000000000000145
  • Roubergue A, Roze E, Vuillaumier-Barrot S, et al. The multiple faces of the ATP1A3-related dystonic movement disorder. Mov Disord. 2013;28(10):1457–1459. doi:10.1002/mds.25396
  • Boelman C, Lagman-Bartolome AM, MacGregor DL, McCabe J, Logan WJ, Minassian BA. Identical ATP1A3 mutation causes alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism phenotypes. Pediatr Neurol. 2014;51(6):850–853. doi:10.1016/j.pediatrneurol.2014.08.015
  • Rosewich H, Ohlenbusch A, Huppke P, et al. The expanding clinical and genetic spectrum of ATP1A3-related disorders. Neurology. 2014;82(11):945–955. doi:10.1212/WNL.0000000000000212
  • Sweney MT, Newcomb TM, Swoboda KJ. The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism, CAPOS and beyond. Pediatr Neurol. 2015;52(1):56–64. doi:10.1016/j.pediatrneurol.2014.09.015
  • Jasien JM, Bonner M, D’alli R, et al. Cognitive, adaptive, and behavioral profiles and management of alternating hemiplegia of childhood. Develop Med Child Neurol. 2019;61(5):547–554. doi:10.1111/dmcn.2019.61.issue-5
  • Panagiotakaki E, De Grandis E, Stagnaro M, et al. Clinical profile of patients with ATP1A3 mutations in alternating hemiplegia of childhood-a study of 155 patients. Orphanet J Rare Dis. 2015;10:123. doi:10.1186/s13023-015-0335-5
  • Saito Y, Inui T, Sakakibara T, Sugai K, Sakuma H, Sasaki M. Evolution of hemiplegic attacks and epileptic seizures in alternating hemiplegia of childhood. Epilepsy Res. 2010;90:248–258. doi:10.1016/j.eplepsyres.2010.05.013
  • Uchitel J, Helseth A, Prange L, et al. The epileptology of alternating hemiplegia of childhood. Neurology. 2019;93(13):e1248–e1259. doi:10.1212/WNL.0000000000008159
  • Mikati MA, Kramer U, Zupanc ML, Shanahan RJ. Alternating hemiplegia of childhood: clinical manifestations and long-term outcome. Pediatr Neurol. 2000;23(2):134–141. doi:10.1016/S0887-8994(00)00157-0
  • Delorme C, Hainque E, Roze E. Alternating upper limb monoplegia due to ATP1A3 mutation. Pediatr Neurol. 2017;68:79–80. doi:10.1016/j.pediatrneurol.2016.12.001
  • Stagnaro M, Pisciotta L, Gherzi M, et al. ATP1A3 spectrum disorders: A video-documented history of 7 genetically confirmed early onset cases. Eur J Paediatr Neurol. 2018;22(2):264–271. doi:10.1016/j.ejpn.2018.01.010
  • Schirinzi T, Graziola F, Cusmai R, et al. ATP1A3-related epileptic encephalopathy responding to ketogenic diet. Brain Dev. 2018;40(5):433–438. doi:10.1016/j.braindev.2018.01.002
  • Sasaki M, Ishii A, Saito Y, et al. Genotype-phenotype correlations in alternating hemiplegia of childhood. Neurology. 2014;82(6):482–490. doi:10.1212/WNL.0000000000000102
  • Pereira P, Guerreiro A, Fonseca M, Halpern C, Pinto-Basto J, Monteiro JP. A distinct phenotype in a novel ATP1A3 mutation: connecting the two ends of a spectrum. Mov Disord Clin Pract. 2016;3(4):398–401. doi:10.1002/mdc3.12263
  • Termsarasab P, Yang AC, Frucht SJ. Intermediate phenotypes of ATP1A3 mutations: phenotype-genotype correlations. Tremor Other Hyperkinet Mov (N Y). 2015;5:336.
  • Andermann E, Andermann F, Silver K, Levin S, Arnold D. Benign familial nocturnal alternating hemiplegia of childhood. Neurology. 1994;44(10):1812–1814. doi:10.1212/WNL.44.10.1812
  • Chaves-Vischer V, Picard F, Andermann E, Dalla Bernardina B, Andermann F. Benign nocturnal alternating hemiplegia of childhood: six patients and long-term follow-up. Neurology. 2001;57(8):1491–1493. doi:10.1212/WNL.57.8.1491
  • Maas RPPWM, Kamsteeg E-J, Mangano S, et al. Benign nocturnal alternating hemiplegia of childhood: a clinical and nomenclatural reappraisal. Eur J Paediatr Neurol. 2018;22(6):1110–1117. doi:10.1016/j.ejpn.2018.07.012
  • Mangano S, Fontana A, Spitaleri C, Mangano GR. Benign nocturnal alternating hemiplegia of childhood: a new case with unusual findings. Brain Dev. 2014;36(5):408–410. doi:10.1016/j.braindev.2013.06.004
  • Sartori S, Vecchi M, Toldo I, Boniver C, Dalla Bernardina B, Maria Laverda A. Benign nocturnal alternating hemiplegia of childhood: the first clinical report with paroxysmal events home-video recordings. Mov Disord. 2008;23(11):1605–1608. doi:10.1002/mds.v23:11
  • Villéga F, Picard F, Espil-Taris C, Husson M, Michel V, Pedespan J-M. Benign nocturnal alternating hemiplegia of childhood: two cases with positive evolution. Brain Dev. 2011;33(6):525–529. doi:10.1016/j.braindev.2010.08.008
  • Wagener-Schimmel LJJC, Nicolai J. Child neurology: benign nocturnal alternating hemiplegia of childhood. Neurology. 2012;79(18):e161–e163. doi:10.1212/WNL.0b013e318271f7a6
  • Mercer RW, Biemesderfer D, Bliss DP Jr, Collins JH, Forbush B. Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na,K-ATPase. J Cell Biol. 1993;121(3):579–586. doi:10.1083/jcb.121.3.579
  • Bøttger P, Tracz Z, Heuck A, Nissen P, Romero-Ramos M, Lykke-Hartmann K. Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain. J Comp Neurol. 2011;519(2):376–404. doi:10.1002/cne.v519.2
  • Ikeda K, Satake S, Onaka T, et al. Enhanced inhibitory neurotransmission in the cerebellar cortex of Atp1a3-deficient heterozygous mice. J Physiol. 2013;591(13):3433–3449. doi:10.1113/jphysiol.2012.247817
  • Holm TH, Lykke-Hartmann K. Insights into the pathology of the α3 Na(+)/K(+)-ATPase ion pump in neurological disorders; lessons from animal models. Front Physiol. 2016;7:209. doi:10.3389/fphys.2016.00209
  • Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957;23(2):394–401. doi:10.1016/0006-3002(57)90343-8
  • Pivovarov AS, Calahorro F, Walker RJ. Na+/K+-pump and neurotransmitter membrane receptors. Invert Neurosci. 2018;19(1):1. doi:10.1007/s10158-018-0221-7
  • Pirahanchi Y, Aeddula NR. Physiology, Sodium Potassium Pump (Na+ K+ Pump) [Updated 2019 Jan 21]. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537088/.
  • Blanco-Arias P, Einholm AP, Mamsa H, et al. A C-terminal mutation of ATP1A3 underscores the crucial role of sodium affinity in the pathophysiology of rapid-onset dystonia-parkinsonism. Hum Mol Genet. 2009;18(13):2370–2377. doi:10.1093/hmg/ddp170
  • McGrail KM, Phillips JM, Sweadner KJ. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase. J Neurosci. 1991;11(2):381–391. doi:10.1523/JNEUROSCI.11-02-00381.1991
  • Crambert G, Hasler U, Beggah AT, et al. Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J Biol Chem. 2000;275(3):1976–1986. doi:10.1074/jbc.275.3.1976
  • Holm R, Toustrup-Jensen MS, Einholm AP, Schack VR, Andersen JP, Vilsen B. Neurological disease mutations of α3 Na+,K+-ATPase: structural and functional perspectives and rescue of compromised function. Biochim Biophys Acta. 2016;1857(11):1807–1828. doi:10.1016/j.bbabio.2016.08.009
  • Clausen MV, Hilbers F, Poulsen H. The structure and function of the Na,K-ATPase isoforms in health and disease. Front Physiol. 2017;8:371.
  • Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature. 2013;502(7470):201–206. doi:10.1038/nature12578
  • Post RL, Hegyvary C, Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972;247(20):6530–6540.
  • Morth JP, Pedersen BP, Toustrup-Jensen MS, et al. Crystal structure of the sodium-potassium pump. Nature. 2007;450(7172):1043–1049. doi:10.1038/nature06419
  • Ogawa H, Shinoda T, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci USA. 2009;106(33):13742–13747. doi:10.1073/pnas.0907054106
  • Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature. 2009;459(7245):446–450. doi:10.1038/nature07939
  • Laursen M, Yatime L, Nissen P, Fedosova NU. Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proc Natl Acad Sci USA. 2013;110(27):10958–10963. doi:10.1073/pnas.1222308110
  • Geering K. The functional role of beta subunits in oligomeric P-type ATPases. J Bioenerg Biomembr. 2001;33(5):425–438. doi:10.1023/A:1010623724749
  • Geering K. Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens. 2008;17(5):526–532. doi:10.1097/MNH.0b013e3283036cbf
  • Reinhard L, Tidow H, Clausen MJ, Nissen P. Na(+),K(+)-ATPase as a docking station: protein-protein complexes of the Na(+),K(+)-ATPase. Cell Mol Life Sci. 2013;70(2):205–222. doi:10.1007/s00018-012-1039-9
  • Blom H, Rönnlund D, Scott L, et al. Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy. BMC Neurosci. 2011;12:16. doi:10.1186/1471-2202-12-16
  • Weigand KM, Messchaert M, Swarts HGP, Russel FGM, Koenderink JB. Alternating Hemiplegia of Childhood mutations have a differential effect on Na(+),K(+)-ATPase activity and ouabain binding. Biochim Biophys Acta. 2014;1842(7):1010–1016. doi:10.1016/j.bbadis.2014.03.002
  • Einholm AP, Toustrup-Jensen MS, Holm R, Andersen JP, Vilsen B. The rapid-onset dystonia parkinsonism mutation D923N of the Na+, K+-ATPase alpha3 isoform disrupts Na+ interaction at the third Na+ site. J Biol Chem. 2010;285(34):26245–26254. doi:10.1074/jbc.M110.123976
  • Clapcote SJ, Duffy S, Xie G, et al. Mutation I810N in the alpha3 isoform of Na+,K+-ATPase causes impairments in the sodium pump and hyperexcitability in the CNS. Proc Natl Acad Sci USA. 2009;106(33):14085–14090. doi:10.1073/pnas.0904817106
  • Kanavakis E, Xaidara A, Papathanasiou-Klontza D, Papadimitriou A, Velentza S, Youroukos S. Alternating hemiplegia of childhood: a syndrome inherited with an autosomal dominant trait. Dev Med Child Neurol. 2003;45:833–836. doi:10.1111/j.1469-8749.2003.tb00899.x
  • Hully M, Ropars J, Hubert L, et al. Mosaicism in ATP1A3-related disorders: not just a theoretical risk. Neurogenetics. 2017;18:23–28. doi:10.1007/s10048-016-0498-9
  • Yang X, Gao H, Zhang J, et al. ATP1A3 mutations and genotype-phenotype correlation of alternating hemiplegia of childhood in Chinese patients. PLoS One. 2014;9(5):e97274. doi:10.1371/journal.pone.0097274
  • Rodacker V, Toustrup-Jensen M, Vilsen B. Mutations Phe785Leu and Thr618Met in Na+,K+-ATPase, associated with familial rapid-onset dystonia parkinsonism, interfere with Na+ interaction by distinct mechanisms. J Biol Chem. 2006;281(27):18539–18548. doi:10.1074/jbc.M601780200
  • Brashear A, Mulholland GK, Zheng QH, Farlow MR, Siemers ER, Hutchins GD. PET imaging of the pre-synaptic dopamine uptake sites in rapid-onset dystonia-parkinsonism (RDP). Mov Disord. 1999;14(1):132–137. doi:10.1002/1531-8257(199901)14:1<132::AID-MDS1022>3.0.CO;2-J
  • Simmons CQ, Thompson CH, Cawthon BE, et al. Direct evidence of impaired neuronal Na/K-ATPase pump function in alternating hemiplegia of childhood. Neurobiol Dis. 2018;115:29–38. doi:10.1016/j.nbd.2018.03.009
  • Arystarkhova E, Haq IU, Luebbert T, et al. Factors in the disease severity of ATP1A3 mutations: impairment, misfolding, and allele competition. Neurobiol Dis. 2019;132:104577. doi:10.1016/j.nbd.2019.104577
  • Moseley AE, Williams MT, Schaefer TL, et al. Deficiency in Na,K-ATPase α isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci. 2007;27(3):616–626. doi:10.1523/JNEUROSCI.4464-06.2007
  • DeAndrade MP, Yokoi F, vanGroen T, Lingrel JB, Li Y. Characterization of Atp1a3 mutant mice as a model of rapid- onset dystonia with parkinsonism. Behav Brain Res. 2011;216(2):659–665.
  • Kirshenbaum GS, Clapcote SJ, Duffy S, et al. Mania-like behavior induced by genetic dysfunction of the neuron-specific Na+,K+-ATPase alpha3 sodium pump. Proc Natl Acad Sci U S A. 2012;109(6):2174.
  • Hunanyan AS, Fainberg NA, Linabarger M, et al. Knock-in mouse model of alternating hemiplegia of childhood: behavioral and electrophysiologic characterization. Epilepsia. 2015;56(1):82–93. doi:10.1111/epi.12878
  • Helseth AR, Hunanyan AS, Adil S, et al. Novel E815K knock-in mouse model of alternating hemiplegia of childhood. Neurobiol Dis. 2018;119:100–112. doi:10.1016/j.nbd.2018.07.028