615
Views
7
CrossRef citations to date
0
Altmetric
Review

Genetic Factors Underlying Sudden Infant Death Syndrome

, , &
Pages 61-76 | Published online: 15 Feb 2021

References

  • Goldstein RD, Blair PS, Sens MA, et al. Inconsistent classification of unexplained sudden deaths in infants and children hinders surveillance, prevention and research: recommendations from the 3rd international congress on sudden infant and child death. Forensic Sci Med Pathol. 2019;15:622–628. doi:10.1007/s12024-019-00156-9
  • Center for Disease Control. Sudden unexpected infant death and sudden infant death syndrome. [ updated September 18, 2020]. Available from: https://www.cdc.gov/sids/data.htm#:~:text=In%202018%2C%20the%20SUID%20rate,100%2C000%20live%20births%20in%202018. Accessed October 10, 2020.
  • Lewak N, van den Berg BJ, Beckwith JB. Sudden infant death syndrome risk factors. Clin Pediatr. 1979;18(7):404–411. doi:10.1177/000992287901800704
  • Horne RSC. Effects of prematurity on heart rate control: implications for sudden infant death syndrome. Expert Rev Cardiovascular Ther. 2006;4(3):335–343. doi:10.1586/14779072.4.3.335
  • Strandberg-Larsen K, Gronboek M, Andersen AN, Andersen PK, Olsen J. Alcohol drinking pattern during pregnancy and risk of infant mortality. Epidemiology. 2009;20(6):884–891. doi:10.1097/EDE.0b013e3181bbd46c
  • Schoendorf KC, Kiely JL. Relationship of sudden infant death syndrome to maternal smoking during and after pregnancy. Pediatrics. 1992;90(6):905–908.
  • Willinger M, Hoffman HJ, Hartford RB. Infant sleep position and risk for sudden infant death syndrome: report of meeting held January 13 and 14, 1994, National Institutes of Health, Bethesda, MD. Pediatrics. 1994;93(5):814–819.
  • Hauck FR, Herman SM, Donovan M, et al. Sleep environment and the risk of sudden infant death syndrome in an urban population: the Chicago infant mortality study. Pediatrics. 2003;111(5):1207–1214.
  • Goldstein RD, Trachtenberg FL, Sens MA, Harty BJ, Kinney HC. Overall postneonatal mortality and rates of SIDS. Pediatrics. 2016;137(1):e20152298. doi:10.1542/peds.2015-2298
  • Hauck FR, Tanabe KO. Beyond “Back to Sleep”: ways to further reduce the risk of sudden infant death syndrome. Pediatr Ann. 2017;46(8):284–290. doi:10.3928/19382359-20170721-01
  • Filiano JJ, Kinney HC. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate. 1994;65(3–4):194–197. doi:10.1159/000244052
  • Christensen ED, Berger J, Alashari MM, et al. Sudden infant death “Syndrome”- insights and future directions from a Utah population database analysis. Am J Med Genet A. 2017;173(1):177–182. doi:10.1002/ajmg.a.37994
  • Rhoades ER, Brenneman G, Lyle J, Handler A. Mortality of American Indian and Alaska native infants. Annu Rev Public Health. 1992;13:269–285. doi:10.1146/annurev.pu.13.050192.001413
  • Pharoah PO, Platt MJ. Sudden infant death syndrome in twins and singletons. Twin Res Hum Genet. 2007;10(4):644–648. doi:10.1375/twin.10.4.644
  • Bennet MJ, Curnock DA, Engel PC, et al. Glutaric aciduria type ii: biochemical investigation and treatment of a child diagnosed prenatally. J Inher Metab Dis. 1984;7(2):57–61. doi:10.1007/BF01805802
  • Clayton PT, Hyland K, Brand M, Leonard JV. Mitochondrial phosphoenolpyruvate carboxykinase deficiency. Eur J Pediatr. 1986;145:46–50. doi:10.1007/BF00441851
  • Hallock J, Morrow G, Karp LA, Barness LA. Postmortem diagnosis of metabolic disorders. The finding of maple syrup urine disease in a case of sudden and unexpected death in infancy. Am J Dis Child. 1969;118(4):649–651. doi:10.1001/archpedi.1969.02100040651022
  • Russell MA, Opitz JM, Viseskul C, Gilbert EF, Bargman GJ. Sudden infant death due to congenital adrenal hypoplasia. Arch Pathol Lab Med. 1977;101(4):168–169.
  • Vawter GF, McGraw CA, Hug G, Kozakewich HP, McNaulty J, Mandell F. An hepatic metabolic profile in sudden infant death (SIDS). Forensic Sci Int. 1986;30(2–3):93–98. doi:10.1016/0379-0738(86)90003-4
  • Howat AJ, Bennett MJ, Variend S, Shaw L, Engel PC. Defects of metabolism of fatty acids in the sudden infant death syndrome. Br Med J (Clin Res Ed). 1985;290(6484):1771–1773. doi:10.1136/bmj.290.6484.1771
  • Egidio RJ, Francis GL, Coates PM, Hale DE, Roesel A. Medium-chain acyl-CoA dehydrogenase deficiency. Am Fam Physician. 1989;39(5):221–226.
  • Neubauer J, Lecca MR, Russo G, et al. Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases. Eur J Hum Genet. 2017;25(4):404–409. doi:10.1038/ejhg.2016.199
  • Emery JL, Howat AJ, Variend S, Vawter GF. Investigation of inborn errors of metabolism in unexpected infant deaths. Lancet. 1988;2(8601):29–31. doi:10.1016/S0140-6736(88)92955-8
  • Jequier Gygax M, Roulet-Perez E, Meagher-Villemure K, et al. Sudden unexpected death in an infant with L-2-hydroxyglutaric aciduria. Eur J Pediatr. 2009;168(8):957–962. doi:10.1007/s00431-008-0869-9
  • Du SH, Zhang F, Yu YG, Chen CX, Wang HJ, Li DR. Sudden infant death from neonate carnitine palmitoyl transferase II deficiency. Forensic Sci Int. 2017;278:e41–e44. doi:10.1016/j.forsciint.2017.06.020
  • Krizova A, Herath JC. Death of a neonate with a negative autopsy and ketoacidosis: a case report of propionic acidemia. Am J Forensic Med Pathol. 2015;36(3):193–195. doi:10.1097/PAF.0000000000000156
  • Schwartz PJ. Cardiac sympathetic innervation and the sudden infant death syndrome. A possible pathogenetic link. Am J Med. 1976;60(2):167–172. doi:10.1016/0002-9343(76)90425-3
  • Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10(12):1932–1963.
  • Gray B, Behr ER. New insights into the genetic basis of inherited arrhythmia syndromes. Circ Cardiovasc Genet. 2016;9(6):569–577. doi:10.1161/CIRCGENETICS.116.001571
  • Maron BJ, Clark CE, Goldstein RE, Epstein SE. Potential role of QT interval prolongation in sudden infant death syndrome. Circulation. 1976;54(3):423–430. doi:10.1161/01.CIR.54.3.423
  • Schwartz PJ, Stramba-Badiale M, Segantini A, et al. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med. 1998;338(24):1709–1714. doi:10.1056/NEJM199806113382401
  • Schwartz PJ, Priori SG, Dumaine R, et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med. 2000;343(4):262–267. doi:10.1056/NEJM200007273430405
  • Schwartz PJ, Priori SG, Bloise R, et al. Molecular diagnosis in a child with sudden infant death syndrome. Lancet. 2001;358(9290):1342–1343. doi:10.1016/S0140-6736(01)06450-9
  • Michowitz Y, Milman A, Sarquella-Brugada G, et al. Fever-related arrhythmic events in the multicenter survey on arrhythmic events in Brugada syndrome. Heart Rhythm. 2018;15(9):1394–1401. doi:10.1016/j.hrthm.2018.04.007
  • Turillazzi E, La Rocca G, Anzalone R, et al. Heterozygous nonsense SCN5A mutation W822X explains a simultaneous sudden infant death syndrome. Virchows Arch. 2008;453(2):209–216. doi:10.1007/s00428-008-0632-7
  • Priori SG, Napolitano C, Giordano U, Collisani G, Memmi M. Brugada syndrome and sudden cardiac death in children. Lancet. 2000;355(9206):808–809. doi:10.1016/S0140-6736(99)05277-0
  • Gando I, Morganstein J, Jana K, McDonald TV, Tang Y, Coetzee WA. Infant sudden death: mutations responsible for impaired Nav1.5 channel trafficking and function. Pacing Clin Electrophysiol. 2017;40(6):703–712. doi:10.1111/pace.13087
  • Rochtus AM, Goldstein RD, Holm IA, et al. The role of sodium channels in sudden unexpected death in pediatrics. Mol Genet Genomic Med. 2020;8(8):e1309. doi:10.1002/mgg3.1309
  • Tester DJ, Dura M, Carturan E, et al. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm. 2007;4(6):733–739. doi:10.1016/j.hrthm.2007.02.026
  • Ohno S, Hasegawa K, Horie M. Gender differences in the inheritance mode of RYR2 mutations in catecholaminergic polymorphic ventricular tachycardia patients. PLoS One. 2015;10(6):e0131517. doi:10.1371/journal.pone.0131517
  • Kohli U, Nayak HM. SIDS associated RYR2 p.Arg2267His variant may lack pathogenicity. J Electrocardiol. 2020;60:23–26. doi:10.1016/j.jelectrocard.2020.03.007
  • Cerrone M, Remme CA, Tadros R, Bezzina CR, Delmar M. Beyond the one gene-one disease paradigm: complex genetics and pleiotropy in inheritable cardiac disorders. Circulation. 2019;140(7):595–610. doi:10.1161/CIRCULATIONAHA.118.035954
  • Davis AM, Glengarry J, Skinner JR. Sudden infant death: QT or not QT? that is no longer the question. Circ Arrhythm Electrophysiol. 2016;9(6):e003859. doi:10.1161/CIRCEP.115.003859
  • Wang DW, Desai RR, Crotti L, et al. Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation. 2007;115(3):368–376. doi:10.1161/CIRCULATIONAHA.106.646513
  • Plant LD, Bowers PN, Liu Q, et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest. 2006;116(2):430–435. doi:10.1172/JCI25618
  • Neary MT, Mohun TJ, Breckenridge RA. A mouse model to study the link between hypoxia, long QT interval and sudden infant death syndrome. Dis Model Mech. 2013;6(2):503–507. doi:10.1242/dmm.010587
  • Dettmeyer RB, Kandolf R. Cardiomyopathies–misdiagnosed as Sudden Infant Death Syndrome (SIDS). Forensic Sci Int. 2010;194(1–3):e21–4. doi:10.1016/j.forsciint.2009.10.010
  • Miller EM, Hinton RB, Czosek R, et al. Genetic testing in pediatric left ventricular noncompaction. Circ Cardiovasc Genet. 2017;10(6):e001735. doi:10.1161/CIRCGENETICS.117.001735
  • Ichida F. Left ventricular noncompaction – risk stratification and genetic consideration. J Cardiol. 2020;75(1):1–9. doi:10.1016/j.jjcc.2019.09.011
  • Rupp S, Felimban M, Schänzer A, et al. Genetic basis of hypertrophic cardiomyopathy in children. Clin Res Cardiol. 2019;108(3):282–289. doi:10.1007/s00392-018-1354-8
  • Brion M, Allegue C, Santori M, et al. Sarcomeric gene mutations in sudden infant death syndrome (SIDS). Forensic Sci Int. 2012;219(1–3):278–281. doi:10.1016/j.forsciint.2012.01.018
  • Tester DJ, Wong LCH, Chanana P, et al. Cardiac genetic predisposition in sudden infant death syndrome. J Am Coll Cardiol. 2018;71(11):1217–1227. doi:10.1016/j.jacc.2018.01.030
  • Lin Y, Williams N, Wang D, et al. Applying high-resolution variant classification to cardiac arrhythmogenic gene testing in a demographically diverse cohort of sudden unexplained deaths. Circ Cardiovasc Genet. 2017;10(6):e001839. doi:10.1161/CIRCGENETICS.117.001839
  • Richards S, Aziz N, Bale S, et al. ACMG laboratory quality assurance committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. doi:10.1038/gim.2015.30
  • Subbotina E, Williams N, Sampson BA, Tang Y, Coetzee WA. Functional characterization of TRPM4 variants identified in sudden unexpected natural death. Forensic Sci Int. 2018;293:37–46. doi:10.1016/j.forsciint.2018.10.006
  • Subbotina E, Yang HQ, Gando I, et al. Functional characterization of ABCC9 variants identified in sudden unexpected natural death. Forensic Sci Int. 2019;298:80–87. doi:10.1016/j.forsciint.2019.02.035
  • Stanley KE, Giordano J, Thorsten V, et al. Causal genetic variants in stillbirth. N Engl J Med. 2020;383(12):1107–1116. doi:10.1056/NEJMoa1908753
  • Schechtman VL, Lee MY, Wilson AJ, Harper RM. Dynamics of respiratory patterning in normal infants and infants who subsequently died of the sudden infant death syndrome. Pediatr Res. 1996;40(4):571–577. doi:10.1203/00006450-199610000-00010
  • Sridhar R, Thach BT, Kelly DH, Henslee JA. Characterization of successful and failed autoresuscitation in human infants, including those dying of SIDS. Pediatr Pulmonol. 2003;36(2):113–122. doi:10.1002/ppul.10287
  • Kahn A, Groswasser J, Rebuffat E, et al. Sleep and cardiorespiratory characteristics of infant victims of sudden death: a prospective case-control study. Sleep. 1992;15(4):287–292. doi:10.1093/sleep/15.4.287
  • Kato I, Franco P, Groswasser J, et al. Incomplete arousal processes in infants who were victims of sudden death. Am J Respir Crit Care Med. 2003;168(11):1298–1303. doi:10.1164/rccm.200301-134OC
  • Paterson DS, Trachtenberg FL, Thompson EG, et al. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA. 2006;296(17):2124–2132. doi:10.1001/jama.296.17.2124
  • Duncan JR, Paterson DS, Hoffman JM, et al. Brainstem serotonergic deficiency in sudden infant death syndrome. JAMA. 2010;303(5):430–437. doi:10.1001/jama.2010.45
  • Haynes RL, Frelinger AL, Giles EK, et al. High serum serotonin in sudden infant death syndrome. Proc Natl Acad Sci U S A. 2017;114(29):7695–7700. doi:10.1073/pnas.1617374114
  • Dosumu-Johnson RT, Cocoran AE, Chang Y, Nattie E, Dymecki SM. Acute perturbation of Pet1-neuron activity in neonatal mice impairs cardiorespiratory homeostatic recovery. Elife. 2018;7:e37857. doi:10.7554/eLife.37857
  • Paterson DS. Serotonin gene variants are unlikely to play a significant role in the pathogenesis of the sudden infant death syndrome. Respir Physiol Neurobiol. 2013;189(2):301–314. doi:10.1016/j.resp.2013.07.001
  • Blakely RD, DeFelice LJ, Galli A. Biogenic amine neurotransmitter transporters: just when you thought you knew them. Physiology (Bethesda). 2005;20:225–231. doi:10.1152/physiol.00013.2005
  • Heils A, Mössner R, Lesch KP. The human serotonin transporter gene polymorphism-basic research and clinical implications. J Neural Transm (Vienna). 1997;104(10):1005–1014. doi:10.1007/BF01273314
  • Ogilvie AD, Battersby S, Bubb VJ, et al. Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet. 1996;347(9003):731–733. doi:10.1016/S0140-6736(96)90079-3
  • Cases O, Seif I, Grimsby J, et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science. 1995;268(5218):1763–1766. doi:10.1126/science.7792602
  • Sabol SZ, Hu S, Hamer D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet. 1998;103(3):273–279. doi:10.1007/s004390050816
  • Sunderland R, Emery JL. Febrile convulsions and cot death. Lancet. 1981;2(8239):176–178. doi:10.1016/S0140-6736(81)90359-7
  • Vestergaard M, Pedersen MG, Ostergaard JR, Pedersen CB, Olsen J, Christensen J. Death in children with febrile seizures: a population-based cohort study. Lancet. 2008;372(9637):457–463. doi:10.1016/S0140-6736(08)61198-8
  • Kinney HC, Poduri AH, Cryan JB, et al. Hippocampal formation maldevelopment and sudden unexpected death across the pediatric age spectrum. J Neuropathol Exp Neurol. 2016;75(10):981–997. doi:10.1093/jnen/nlw075
  • Kinney HC, Cryan JB, Haynes RL, et al. Dentate gyrus abnormalities in sudden unexplained death in infants: morphological marker of underlying brain vulnerability. Acta Neuropathol. 2015;129(1):65–80. doi:10.1007/s00401-014-1357-0
  • Houser CR. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res. 1990;535(2):195–204. doi:10.1016/0006-8993(90)91601-C
  • Chan S, Bello JA, Shinnar S, et al. Hippocampal malrotation is associated with prolonged febrile seizures: results of the FEBSTAT study. AJR Am J Roentgenol. 2015;205:1068–1074. doi:10.2214/AJR.14.13330
  • Saetre E, Abdelnoor M. Incidence rate of sudden death in epilepsy: a systematic review and meta-analysis. Epilepsy Behav. 2018;86:193–199. doi:10.1016/j.yebeh.2018.06.037
  • Verducci C, Hussain F, Donner E, et al. SUDEP in the North American SUDEP Registry: the full spectrum of epilepsies. Neurology. 2019;93(3):e227–e236. doi:10.1212/WNL.0000000000007778
  • Kinney HC, McDonald AG, Minter ME, Berry GT, Poduri A, Goldstein RD. Witnessed sleep-related seizure and sudden unexpected death in infancy: a case report. Forensic Sci Med Pathol. 2013;9(3):418–421. doi:10.1007/s12024-013-9448-0
  • Hefti MM, Kinney HC, Cryan JB, et al. Sudden unexpected death in early childhood: general observations in a series of 151 cases: part 1 of the investigations of the San Diego SUDC research project. Forensic Sci Med Pathol. 2016;12(1):4–13. doi:10.1007/s12024-015-9724-2
  • Hefti MM, Cryan JB, Haas EA, et al. Hippocampal malformation associated with sudden death in early childhood: a neuropathologic study: part 2 of the investigations of The San Diego SUDC research project. Forensic Sci Med Pathol. 2016;12(1):14–25. doi:10.1007/s12024-015-9731-3
  • Kon FC, Vázquez RZ, Lang A, Cohen MC. Hippocampal abnormalities and seizures: a 16-year single center review of sudden unexpected death in childhood, sudden unexpected death in epilepsy and SIDS. Forensic Sci Med Pathol. 2020;16(3):423–434. doi:10.1007/s12024-020-00268-7
  • Brownstein CA, Goldstein RD, Thompson CH, et al. SCN1A variants associated with sudden infant death syndrome. Epilepsia. 2018;59(4):e56–e62. doi:10.1111/epi.14055
  • Frasier CR, Zhang H, Offord J, et al. Channelopathy as a SUDEP biomarker in dravet syndrome patient-derived cardiac myocytes. Stem Cell Reports. 2018;11(3):626–634. doi:10.1016/j.stemcr.2018.07.012
  • Halvorsen M, Petrovski S, Shellhaas R, et al. Mosaic mutations in early-onset genetic diseases. Genet Med. 2016;18(7):746–749. doi:10.1038/gim.2015.155
  • Catterall WA. Forty years of sodium channels: structure, function, pharmacology, and epilepsy. Neurochem Res. 2017;42(9):2495–2504. doi:10.1007/s11064-017-2314-9
  • Gando I, Williams N, Fishman GI, Sampson BA, Tang Y, Coetzee WA. Functional characterization of SCN10A variants in several cases of sudden unexplained death. Forensic Sci Int. 2019;301:289–298. doi:10.1016/j.forsciint.2019.05.042
  • Holm H, Gudbjartsson DF, Arnar DO, et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet. 2010;42(2):117–122. doi:10.1038/ng.511
  • Zhang L, Zhou F, Huang L, et al. Association of common and rare variants of SCN10A gene with sudden unexplained nocturnal death syndrome in Chinese Han population. Int J Legal Med. 2017;131(1):53–60. doi:10.1007/s00414-016-1397-1
  • Swenson BR, Louie T, Lin HJ, et al. GWAS of QRS duration identifies new loci specific to Hispanic/Latino populations. PLoS One. 2019;14(6):e0217796. doi:10.1371/journal.pone.0217796
  • Männikkö R, Wong L, Tester DJ, et al. Dysfunction of NaV1.4, a skeletal muscle voltage-gated sodium channel, in sudden infant death syndrome: a case-control study. Lancet. 2018;391(10129):1483–1492. doi:10.1016/S0140-6736(18)30021-7
  • Lion-Francois L, Mignot C, Vicart S, et al. Severe neonatal episodic laryngospasm due to de novo SCN4A mutations: a new treatable disorder. Neurology. 2010;75(7):641–645. doi:10.1212/WNL.0b013e3181ed9e96
  • Türkdoğan D, Matthews E, Usluer S, et al. Possible role of SCN4A skeletal muscle mutation in apnea during seizure. Epilepsia Open. 2019;4(3):498–503. doi:10.1002/epi4.12347
  • Nakase K, Kollmar R, Lazar J, et al. Laryngospasm, central and obstructive apnea during seizures: defining pathophysiology for sudden death in a rat model. Epilepsy Res. 2016;128:126–139. doi:10.1016/j.eplepsyres.2016.08.004
  • Hawkins NA, Calhoun JD, Huffman AM, Kearney JA. Gene expression profiling in a mouse model of Dravet syndrome. Exp Neurol. 2019;311:247–256. doi:10.1016/j.expneurol.2018.10.010
  • Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med. 2009;1(2):2ra6. doi:10.1126/scitranslmed.3000289
  • Johnson JN, Hofman N, Haglund CM, Cascino GD, Wilde AA, Ackerman MJ. Identification of a possible pathogenic link between congenital long QT syndrome and epilepsy. Neurology. 2009;72(3):224–231. doi:10.1212/01.wnl.0000335760.02995.ca
  • Tu E, Bagnall RD, Duflou J, Semsarian C. Post-mortem review and genetic analysis of sudden unexpected death in epilepsy (SUDEP) cases. Brain Pathol. 2011;21(2):201–208. doi:10.1111/j.1750-3639.2010.00438.x
  • Toczek MT, Carson RE, Lang L, et al. PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology. 2003;60(5):749–756. doi:10.1212/01.WNL.0000049930.93113.20
  • Savic I, Lindström P, Gulyás B, Halldin C, Andrée B, Farde L. Limbic reductions of 5-HT1A receptor binding in human temporal lobe epilepsy. Neurology. 2004;62(8):1343–1351. doi:10.1212/01.WNL.0000123696.98166.AF
  • Merlet I, Ostrowsky K, Costes N, et al. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an [18F]MPPF-PET study. Brain. 2004;127(4):900–913. doi:10.1093/brain/awh109
  • Statnick MA, Maring-Smith ML, Clough RW, et al. Effect of 5,7-dihydroxytryptamine on audiogenic seizures in genetically epilepsy-prone rats. Life Sci. 1996;59(21):1763–1771. doi:10.1016/0024-3205(96)00519-X
  • Richerson GB, Buchanan GF. The serotonin axis: shared mechanisms in seizures, depression, and SUDEP. Epilepsia. 2011;52(1):28–38. doi:10.1111/j.1528-1167.2010.02908.x
  • Kim Y, Bravo E, Thirnbeck CK, et al. Severe peri-ictal respiratory dysfunction is common in Dravet syndrome. J Clin Invest. 2018;128(3):1141–1153. doi:10.1172/JCI94999
  • Opdal SH. Cytokines, Infection, and Immunity. In: Duncan JR, Byard RW, editors. SIDS Sudden Infant and Early Childhood Death: The Past, the Present and the Future. The University of Adelaide: University of Adelaide Press; 2018:689–710.
  • Platt MW, Blair PS, Fleming PJ, et al. A clinical comparison of SIDS and explained sudden infant deaths: how healthy and how normal? CESDI SUDI Research Group. Confidential inquiry into stillbirths and deaths in infancy study. Arch Dis Child. 2000;82(2):98–106. doi:10.1136/adc.82.2.98
  • Fard D, Läer K, Rothämel T, et al. Candidate gene variants of the immune system and sudden infant death syndrome. Int J Legal Med. 2016;130(4):1025–1033. doi:10.1007/s00414-016-1347-y
  • Opdal SH, Rognum TO. The IL6-174G/C polymorphism and sudden infant death syndrome. Hum Immunol. 2007;68(6):541–543. doi:10.1016/j.humimm.2007.02.008
  • Moscovis SM, Gordon AE, Al Madani OM, et al. Interleukin-10 and sudden infant death syndrome. FEMS Immunol Med Microbiol. 2004;42(1):130–138. doi:10.1016/j.femsim.2004.06.020
  • Courts C, Madea B. No association of IL-10 promoter SNP −592 and −1082 and SIDS. Forensic Sci Int. 2011;204(1–3):179–181. doi:10.1016/j.forsciint.2010.06.001
  • Moscovis SM, Gordon AE, Al Madani OM, et al. Genetic and environmental factors affecting TNF-α responses in relation to sudden infant death syndrome. Front Immunol. 2015;6:374. doi:10.3389/fimmu.2015.00374
  • Perskvist N, Skoglund K, Edston E, Bäckström G, Lodestad I, Palm U. TNF-alpha and IL-10 gene polymorphisms versus cardioimmunological responses in sudden infant death. Fetal Pediatr Pathol. 2008;27(3):149–165. doi:10.1080/15513810802077651
  • Ferrante L, Opdal SH, Vege A, Rognum TO. IL-1 gene cluster polymorphisms and sudden infant death syndrome. Hum Immunol. 2010;71(4):402–406. doi:10.1016/j.humimm.2010.01.011
  • Kawaguchi Y, Tochimoto A, Hara M, et al. Contribution of single nucleotide polymorphisms of the IL1A gene to the cleavage of precursor IL-1alpha and its transcription activity. Immunogenetics. 2007;59(6):441–448. doi:10.1007/s00251-007-0213-y
  • Highet AR, Berry AM, Goldwater PN. Distribution of interleukin-1 receptor antagonist genotypes in sudden unexpected death in infancy (SUDI); unexplained SUDI have a higher frequency of allele 2. Ann Med. 2010;42(1):64–69. doi:10.3109/07853890903325360
  • Hurme M, Santtila S. IL-1 receptor antagonist (IL-1Ra) plasma levels are co-ordinately regulated by both IL-1Ra and IL-1beta genes. Eur J Immunol. 1998;28(8):2598–2602. doi:10.1002/(SICI)1521-4141(199808)28:08<2598::AID-IMMU2598>3.0.CO;2-K
  • Ferrante L, Opdal SH, Vege A, Rognum TO. TNF-alpha promoter polymorphisms in sudden infant death. Hum Immunol. 2008;69(6):368–373. doi:10.1016/j.humimm.2008.04.006
  • Hafke A, Schürmann P, Rothämel T, Dörk T, Klintschar M. Evidence for an association of interferon gene variants with sudden infant death syndrome. Int J Legal Med. 2019;133(3):863–869. doi:10.1007/s00414-018-1974-6
  • Puffenberger EG, Hu-Lince D, Parod JM, et al. Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. Proc Natl Acad Sci USA. 2004;101(32):11689–11694. doi:10.1073/pnas.0401194101
  • Slater B, Glinton K, Dai H, et al. Sudden infant death with dysgenesis of the testes syndrome in a non-Amish infant: a case report. Am J Med Genet. 2020;182(11):2751–2754. doi:10.1002/ajmg.a.61842
  • Conomy JP, Levinsohn M, Fanaroff A. Familial infantile myasthenia gravis: a cause of sudden death in young children. J Pediatr. 1975;87(3):428–430. doi:10.1016/S0022-3476(75)80651-2
  • Robertson WC, Chun RW, Kornguth SE. Familial infantile myasthenia. Arch Neurol. 1980;37(2):117–119. doi:10.1001/archneur.1980.00500510075018
  • Finsterer J. Congenital myasthenic syndromes. Orphanet J Rare Dis. 2019;14(1):57. doi:10.1186/s13023-019-1025-5
  • Byring RF, Pihko H, Tsujino A, et al. Congenital myasthenic syndrome associated with episodic apnea and sudden infant death. Neuromuscul Disord. 2002;12(6):548–553. doi:10.1016/S0960-8966(01)00336-4
  • Bachetti T, Ceccherini I. Causative and common PHOX2B variants define a broad phenotypic spectrum. Clin Genet. 2020;97(1):103–113. doi:10.1111/cge.13633
  • Amiel J, Salomon R, Attié T, et al. Mutations of the RET-GDNF signaling pathway in Ondine’s curse. Am J Hum Genet. 1998;62(3):715–717. doi:10.1086/301759
  • de Pontual L, Népote V, Attié-Bitach T, et al. Noradrenergic neuronal development is impaired by mutation of the proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine’s curse). Hum Mol Genet. 2003;12(23):3173–3180. doi:10.1093/hmg/ddg339
  • Bolk S, Angrist M, Xie J, et al. Endothelin-3 frameshift mutation in congenital central hypoventilation syndrome. Nat Genet. 1996;13(4):395–396. doi:10.1038/ng0896-395
  • Belligni EF, Palmer RW, Hennekam RC. MECP2 duplication in a patient with congenital central hypoventilation. Am J Med Genet. 2010;152A(6):1591–1593. doi:10.1002/ajmg.a.33311
  • Guilleminault C, McQuitty J, Ariagno RL, Challamel MJ, Korobkin R, McClead RE. Congenital central alveolar hypoventilation syndrome in six infants. Pediatrics. 1982;70(5):684–694.
  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet J-F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 1999;399(6734):366–370. doi:10.1038/20700
  • Stornetta RL, Moreira TS, Takakura AC, et al. Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci. 2006;26(40):10305–10314. doi:10.1523/JNEUROSCI.2917-06.2006
  • Berry-Kravis EM, Zhou L, Rand CM, Weese-Mayer DE. Congenital central hypoventilation syndrome: PHOX2B mutations and phenotype. Am J Respir Crit Care Med. 2006;174(10):1139–1144. doi:10.1164/rccm.200602-305OC
  • Liebrechts-Akkerman G, Liu F, Lao O, et al. PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population. Int J Legal Med. 2014;128(4):621–629. doi:10.1007/s00414-013-0962-0
  • Ventura F, Barranco R, Bachetti T, et al. Medico-legal investigation in an explicable case of congenital central hypoventilation syndrome due to a rare variant of the PHOX2B gene. J Forensic Leg Med. 2018;58:1–5. doi:10.1016/j.jflm.2018.04.009
  • Di Zanni E, Adamo A, Belligni E, et al. Common PHOX2B poly-alanine contractions impair RET gene transcription, predisposing to Hirschsprung disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863(7):1770–1777. doi:10.1016/j.bbadis.2017.04.017
  • Fernández RM, Mathieu Y, Luzón-Toro B, et al. Contributions of PHOX2B in the pathogenesis of Hirschsprung disease. PLoS One. 2013;8(1):e54043. doi:10.1371/journal.pone.0054043
  • Ruiz-Ferrer M, Fernández RM, Antiñolo G, López-Alonso M, Eng C, Borrego S. A complex additive model of inheritance for Hirschsprung disease is supported by both RET mutations and predisposing RET haplotypes. Genet Med. 2006;8(11):704–710. doi:10.1097/01.gim.0000245632.06064.f1
  • Wallace DC. Mitochondrial genetic medicine. Nat Genet. 2018;50(12):1642–1649. doi:10.1038/s41588-018-0264-z
  • Läer K, Vennemann M, Rothämel T, Klintschar M. Mitochondrial deoxyribonucleic acid may play a role in a subset of sudden infant death syndrome cases. Acta Paediatr. 2014;103(7):775–779. doi:10.1111/apa.12609
  • Opdal SH, Rognum TO, Torgersen H, Vege A. Mitochondrial DNA point mutations detected in four cases of sudden infant death syndrome. Acta Paediatr. 1999;88(9):957–960. doi:10.1111/j.1651-2227.1999.tb00189.x
  • Ogle RF, Christodoulou J, Fagan E, et al. Mitochondrial myopathy with tRNA(Leu(UUR)) mutation and complex I deficiency responsive to riboflavin. J Pediatr. 1997;130(1):138–145. doi:10.1016/S0022-3476(97)70323-8
  • Silvestri G, Santorelli FM, Shanske S, et al. A new mtDNA mutation in the tRNA(Leu(UUR)) gene associated with maternally inherited cardiomyopathy. Hum Mutat. 1994;3(1):37–43. doi:10.1002/humu.1380030107
  • Tester DJ, Wong LCH, Chanana P, et al. Exome-wide rare variant analyses in sudden infant death syndrome. J Pediatr. 2018;203:423–428.e11. doi:10.1016/j.jpeds.2018.08.011
  • Toruner GA, Kurvathi R, Sugalski R, et al. Copy number variations in three children with sudden infant death. Clin Genet. 2009;76(1):63–68. doi:10.1111/j.1399-0004.2009.01161.x
  • Manning M, Hudgins L; Professional Practice and Guidelines Committee. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12(11):742–745. doi:10.1097/GIM.0b013e3181f8baad
  • Lee JS, Hwang H, Kim SY, et al. Chromosomal microarray with clinical diagnostic utility in children with developmental delay or intellectual disability. Ann Lab Med. 2018;38(5):473–480. doi:10.3343/alm.2018.38.5.473
  • Allen NM, Conroy J, Shahwan A, et al. Chromosomal microarray in unexplained severe early onset epilepsy - A single centre cohort. Eur J Paediatr Neurol. 2015;19(4):390–394. doi:10.1016/j.ejpn.2015.03.010
  • Truty R, Paul J, Kennemer M, et al. Prevalence and properties of intragenic copy-number variation in Mendelian disease genes. Genet Med. 2019;21(1):114–123. doi:10.1038/s41436-018-0033-5
  • Middleton O, Baxter S, Demo E, et al. National association of medical examiners position paper: retaining postmortem samples for genetic testing. Acad Forensic Pathol. 2013;3(2):191–194. doi:10.23907/2013.024