197
Views
4
CrossRef citations to date
0
Altmetric
Case Report

A Homozygous Truncating Mutation in NALCN Causing IHPRF1: Detailed Clinical Manifestations and a Review of Literature

, , , ORCID Icon &
Pages 151-157 | Published online: 27 Aug 2020

References

  • Snutch TP, Monteil A. The sodium “leak” has finally been plugged. Neuron. 2007;54(4):505–507. doi:10.1016/j.neuron.2007.05.005
  • Ren D. Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron. 2011;72(6):899–911. doi:10.1016/j.neuron.2011.12.007
  • Cochet-Bissuel M, Lory P, Monteil A. The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci. 2014;8(MAY):1–17. doi:10.3389/fncel.2014.00132
  • Lu B, Su Y, Das S, et al. Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature. 2009;457(7230):741–744. doi:10.1038/nature07579
  • Swayne LA, Mezghrani A, Varrault A, et al. The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic β-cell line. EMBO Rep. 2009;10(8):873–880. doi:10.1038/embor.2009.125
  • Lu B, Zhang Q, Wang H, Wang Y, Nakayama M, Ren D. Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex. Neuron. 2010;68(3):488–499. doi:10.1016/j.neuron.2010.09.014
  • Philippart F, Khaliq ZM. G i/o protein-coupled receptors in dopamine neurons inhibit the sodium leak channel NALCN. Elife. 2018;7:1–19. doi:10.7554/eLife.40984
  • Perez Y, Kadir R, Volodarsky M, et al. UNC80 mutation causes a syndrome of hypotonia, severe intellectual disability, dyskinesia and dysmorphism, similar to that caused by mutations in its interacting cation channel NALCN. J Med Genet. 2016;53(6):397–402. doi:10.1136/jmedgenet-2015-103352
  • Karakaya M, Heller R, Kunde V, et al. Novel mutations in the nonselective sodium leak channel (NALCN) lead to distal arthrogryposis with increased muscle tone. Neuropediatrics. 2016;47(4):273–277. doi:10.1055/s-0036-1584084
  • Bouasse M, Impheng H, Servant Z, Lory P, Monteil A. Functional expression of CLIFAHDD and IHPRF pathogenic variants of the NALCN channel in neuronal cells reveals both gain- and loss-of-function properties. Sci Rep. 2019;9(1):1–14. doi:10.1038/s41598-019-48071-x
  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–595. doi:10.1093/bioinformatics/btp698
  • McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. doi:10.1101/gr.107524.110
  • Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):1–7. doi:10.1093/nar/gkq603
  • Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(D1):980–985. doi:10.1093/nar/gkt1113
  • Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. bioRxiv. 2019;531210. doi:10.1101/531210.
  • Glusman G, Caballero J, Mauldin DE, Hood L, Roach JC. Kaviar: an accessible system for testing SNV novelty. Bioinformatics. 2011;27(22):3216–3217. doi:10.1093/bioinformatics/btr540
  • Schwarz JM, Cooper DN, Schuelke M, Seelow D. Mutationtaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–362. doi:10.1038/nmeth.2890
  • Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–D894. doi:10.1093/nar/gky1016
  • Campbell J, FitzPatrick DR, Azam T, et al. NALCN dysfunction as a cause of disordered respiratory rhythm with central apnea. Pediatrics. 2018;141(Supplement 5):S485–S490. doi:10.1542/peds.2017-0026
  • Bramswig NC, Bertoli-Avella AM, Albrecht B, et al. Genetic variants in components of the NALCN–UNC80–UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Hum Genet. 2018;137(9):753–768. doi:10.1007/s00439-018-1929-5
  • Bourque DK, Dyment DA, MacLusky I, Kernohan KD, McMillan HJ. Periodic breathing in patients with NALCN mutations. J Hum Genet. 2018;63(10):1093–1096. doi:10.1038/s10038-018-0484-1
  • Angius A, Cossu S, Uva P, et al. Novel NALCN biallelic truncating mutations in siblings with IHPRF1 syndrome. Clin Genet. 2018;93(6):1245–1247. doi:10.1111/cge.13162
  • Al-Sayed MD, Al-Zaidan H, Albakheet A, et al. Mutations in NALCN cause an autosomal-recessive syndrome with severe hypotonia, speech impairment, and cognitive delay. Am J Hum Genet. 2013;93(4):721–726. doi:10.1016/j.ajhg.2013.08.001
  • Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet. 2019;10(MAY):1–14. doi:10.3389/fgene.2019.00426
  • Carneiro TNR, Krepischi ACV, Costa SS, et al. Utility of trio-based exome sequencing in the elucidation of the genetic basis of isolated syndromic intellectual disability: illustrative cases. Appl Clin Genet. 2018;11:93–98. doi:10.2147/TACG.S165799
  • Noavar S, Behroozi S, Tatarcheh T, Parvini F, Foroutan M, Fahimi H. A novel homozygous frame-shift mutation in the SLC29A3 gene: a new case report and review of literature. BMC Med Genet. 2019;20(1):4–10. doi:10.1186/s12881-019-0879-7
  • Takenouchi T, Inaba M, Uehara T, Takahashi T, Kosaki K, Mizuno S. Biallelic mutations in NALCN: expanding the genotypic and phenotypic spectra of IHPRF1. Am J Med Genet Part A. 2018;176(2):431–437. doi:10.1002/ajmg.a.38543
  • Köroǧlu Ç, Seven M, Tolun A. Recessive truncating NALCN mutation in infantile neuroaxonal dystrophy with facial dysmorphism. J Med Genet. 2013;50(8):515–520. doi:10.1136/jmedgenet-2013-101634
  • Gal M, Magen D, Zahran Y, et al. A novel homozygous splice site mutation in NALCN identified in siblings with cachexia, strabismus, severe intellectual disability, epilepsy and abnormal respiratory rhythm. Eur J Med Genet. 2016;59(4):204–209. doi:10.1016/j.ejmg.2016.02.007
  • 1,2,3. 2020; (314):1–32.
  • Mistrova E, Kruzliak P, Chottova Dvorakova M. Role of substance P in the cardiovascular system. Neuropeptides. 2016;58:41–51. doi:10.1016/j.npep.2015.12.005
  • Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;73(22):4249–4264. doi:10.1007/s00018-016-2293-z
  • Zhang N, Gao D, Liu Y, Ji S, Sha L. Effects of Neuropeptide substance p on proliferation and β-cell differentiation of adult pancreatic ductal cells. Front Neurosci. 2018;12(NOV):1–11. doi:10.3389/fnins.2018.00806
  • Yeh SY, Huang WH, Wang W, et al. Respiratory network stability and modulatory response to substance P require NALCN. Neuron. 2017;94(2):294–303.e4. doi:10.1016/j.neuron.2017.03.024
  • Kim BJ, Chang IY, Choi S, et al. Involvement of Na + -leak channel in substance P-induced depolarization of pacemaking activity in interstitial cells of Cajal. Cell Physiol Biochem. 2012;29(3–4):501–510. doi:10.1159/000338504