248
Views
9
CrossRef citations to date
0
Altmetric
Review

Updates on Genes and Genetic Mechanisms Implicated in Primary Angle-Closure Glaucoma

ORCID Icon
Pages 89-112 | Published online: 09 Mar 2021

References

  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–1911. doi:10.1001/jama.2014.3192
  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi:10.1016/j.ophtha.2014.05.013
  • Chan EW, Li X, Tham YC, et al. Glaucoma in Asia: regional prevalence variations and future projections. Br J Ophthalmol. 2016;100(1):78–85. doi:10.1136/bjophthalmol-2014-306102
  • Cheng JW, Zong Y, Zeng YY, Wei RL. The prevalence of primary angle closure glaucoma in adult Asians: a systematic review and meta-analysis. PLoS One. 2014;9(7):e103222. doi:10.1371/journal.pone.0103222
  • Foster PJ. The epidemiology of primary angle closure and associated glaucomatous optic neuropathy. Semin Ophthalmol. 2002;17(2):50–58. doi:10.1076/soph.17.2.50.14718
  • Foster PJ, Buhrmann R, Quigley HA, Johnson G. The definition andclassification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–242. doi:10.1136/bjo.86.2.238
  • Wang N, Ouyang J, Zhou W, et al. [Multiple patterns of angle closure mechanisms in primary angle closure glaucoma in Chinese]. Zhonghua Yan Ke Za Zhi. 2000;36(1):46–51, 45, 46. Chinese.
  • Sun X, Dai Y, Chen Y, et al. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45. doi:10.1016/j.preteyeres.2016.12.003
  • Vajaranant TS, Nayak S, Wilensky JT, Joslin CE. Gender and glaucoma: what we know and what we need to know. Curr Opin Ophthalmol. 2010;21(2):91–99. doi:10.1097/ICU.0b013e3283360b7e
  • Amerasinghe N, Aung T. Angle-closure: risk factors, diagnosis and treatment. Prog Brain Res. 2008;173:31–45.
  • Kavitha S, Zebardast N, Palaniswamy K, et al. Family history is a strong risk factor for prevalent angle closure in a South Indian population. Ophthalmology. 2014;121(11):2091–2097. doi:10.1016/j.ophtha.2014.05.001
  • Subak-Sharpe I, Low S, Nolan W, Foster PJ. Pharmacological and environmental factors in primary angle-closure glaucoma. Br Med Bull. 2010;93(1):125–143. doi:10.1093/bmb/ldp042
  • Othman MI, Sullivan SA, Skuta GL, et al. Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet. 1998;63(5):1411–1418. doi:10.1086/302113
  • Chandra A, Mitry D, Wright A, Campbell H, Charteris DG. Genome-wide association studies: applications and insights gained in Ophthalmology. Eye (Lond). 2014;28(9):1066–1079. doi:10.1038/eye.2014.145
  • Aung T, Khor CC. Glaucoma genetics: recent advances and future directions. Asia Pac J Ophthalmol (Phila). 2016;5(4):256–259. doi:10.1097/APO.0000000000000229
  • Thorleifsson G, Walters GB, Hewitt AW, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 2010;42(10):906–909. doi:10.1038/ng.661
  • Burdon KP, Macgregor S, Hewitt AW, et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet. 2011;43(6):574–578. doi:10.1038/ng.824
  • Thorleifsson G, Magnusson KP, Sulem P, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317(5843):1397–1400. doi:10.1126/science.1146554
  • Vithana EN, Khor CC, Qiao C, et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2012;44(10):1142–1146. doi:10.1038/ng.2390
  • Khor CC, Do T, Jia H, et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2016;48(5):556–562. doi:10.1038/ng.3540
  • Pulimeno P, Paschoud S, Citi S. A role for ZO-1 and PLEKHA7 in recruiting paracingulin to tight and adherens junctions of epithelial cells. J Biol Chem. 2011;286(19):16743–16750. doi:10.1074/jbc.M111.230862
  • Lee MC, Shei W, Chan AS, et al. Primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 encodes a novel Rac1/Cdc42 GAP that modulates cell migration and blood-aqueous barrier function. Hum Mol Genet. 2017;26(20):4011–4027. doi:10.1093/hmg/ddx292
  • Lee MC, Chan AS, Goh SR, et al. Expression of the primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 in endothelial and epithelial cell junctions in the eye. Invest Ophthalmol Vis Sci. 2014;55(6):3833–3841. doi:10.1167/iovs.14-14145
  • Nongpiur ME, Ku JY, Aung T. Angle closure glaucoma: a mechanistic review. Curr Opin Ophthalmol. 2011;22(2):96–101. doi:10.1097/ICU.0b013e32834372b9
  • Quigley HA, Silver DM, Friedman DS, et al. Iris cross-sectional area decreases with pupil dilation and its dynamic behavior is a risk factor in angle closure. J Glaucoma. 2009;18(3):173–179. doi:10.1097/IJG.0b013e31818624ce
  • Kong X, Liu X, Huang X, Mao Z, Zhong Y, Chi W. Damage to the blood-aqueous barrier in eyes with primary angle closure glaucoma. Mol Vis. 2010;16:2026–2032.
  • Heimark RL, Kaochar S, Stamer WD. Human Schlemm’s canal cells express the endothelial adherens proteins, VE-cadherin and PECAM-1. Curr Eye Res. 2002;25(5):299–308. doi:10.1076/ceyr.25.5.299.13495
  • Acke FR, Malfait F, Vanakker OM, et al. Novel pathogenic COL11A1/COL11A2 variants in Stickler syndrome detected by targeted NGS and exome sequencing. Mol Genet Metab. 2014;113(3):230–235. doi:10.1016/j.ymgme.2014.09.001
  • Richards AJ, McNinch A, Martin H, et al. Stickler syndrome and the vitreous phenotype: mutations in COL2A1 and COL11A1. Hum Mutat. 2010;31(6):E1461–1471. doi:10.1002/humu.21257
  • Khalifa O, Imtiaz F, Allam R, et al. A recessive form of Marshall syndrome is caused by a mutation in the COL11A1 gene. J Med Genet. 2012;49(4):246–248. doi:10.1136/jmedgenet-2012-100783
  • Tengroth B, Rehnberg M, Amitzboll T. A comparative analysis of the collagen type and distribution in the trabecular meshwork, sclera, lamina cribrosa and the optic nerve in the human eye. Acta Ophthalmol Suppl. 1985;173:91–93. doi:10.1111/j.1755-3768.1985.tb06856.x
  • McBrien NA, Metlapally R, Jobling AI, Gentle A. Expression of collagen-binding integrin receptors in the mammalian sclera and their regulation during the development of myopia. Invest Ophthalmol Vis Sci. 2006;47(11):4674–4682. doi:10.1167/iovs.05-1150
  • Huang W, Fan Q, Wang W, Zhou M, Laties AM, Zhang X. Collagen: a potential factor involved in the pathogenesis of glaucoma. Med Sci Monit Basic Res. 2013;19:237–240. doi:10.12659/MSMBR.889061
  • Last JA, Pan T, Ding Y, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 2011;52(5):2147–2152. doi:10.1167/iovs.10-6342
  • Wang B, Hua Y, Brazile BL, Yang B, Sigal IA. Collagen fiber interweaving is central to sclera stiffness. Acta Biomater. 2020;113:429–437. doi:10.1016/j.actbio.2020.06.026
  • Behkam R, Kollech HG, Jana A, et al. Racioethnic differences in the biomechanical response of the lamina cribrosa. Acta Biomater. 2019;88:131–140. doi:10.1016/j.actbio.2019.02.028
  • Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res. 2011;93(1):4–12. doi:10.1016/j.exer.2010.09.014
  • Wallace DM, O’Brien CJ. The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma. Exp Eye Res. 2016;142:102–109. doi:10.1016/j.exer.2014.12.006
  • Ren R, Wang N, Li B, et al. Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Invest Ophthalmol Vis Sci. 2009;50(5):2175–2184. doi:10.1167/iovs.07-1429
  • Michael I, Shmoish M, Walton DS, Levenberg S. Interactions between trabecular meshwork cells and lens epithelial cells: a possible mechanism in infantile aphakic glaucoma. Invest Ophthalmol Vis Sci. 2008;49(9):3981–3987. doi:10.1167/iovs.08-1674
  • Jandrig B, Seitz S, Hinzmann B, et al. ST18 is a breast cancer tumor suppressor gene at human chromosome 8q11.2. Oncogene. 2004;23(57):9295–9302. doi:10.1038/sj.onc.1208131
  • Yang J, Siqueira MF, Behl Y, Alikhani M, Graves DT. The transcription factor ST18 regulates proapoptotic and proinflammatory gene expression in fibroblasts. FASEB J. 2008;22(11):3956–3967. doi:10.1096/fj.08-111013
  • Duvesh R, Verma A, Venkatesh R, et al. Association study in a South Indian population supports rs1015213 as a risk factor for primary angle closure. Invest Ophthalmol Vis Sci. 2013;54(8):5624–5628. doi:10.1167/iovs.13-12186
  • Nongpiur ME, Cheng CY, Duvesh R, et al. Evaluation of primary angle-closure glaucoma susceptibility loci in patients with early stages of angle-closure disease. Ophthalmology. 2018;125(5):664–670. doi:10.1016/j.ophtha.2017.11.016
  • Ma YQ, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of beta3 integrins. J Cell Biol. 2008;181(3):439–446. doi:10.1083/jcb.200710196
  • Liu J, Fukuda K, Xu Z, et al. Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J Biol Chem. 2011;286(50):43334–43342. doi:10.1074/jbc.M111.295352
  • Shen Z, Ye Y, Kauttu T, et al. Novel focal adhesion protein kindlin-2 promotes the invasion of gastric cancer cells through phosphorylation of integrin beta1 and beta3. J Surg Oncol. 2013;108(2):106–112. doi:10.1002/jso.23353
  • Tu Y, Wu S, Shi X, Chen K, Wu C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell. 2003;113(1):37–47. doi:10.1016/S0092-8674(03)00163-6
  • Yu Y, Wu J, Wang Y, et al. Kindlin 2 forms a transcriptional complex with beta-catenin and TCF4 to enhance Wnt signalling. EMBO Rep. 2012;13(8):750–758. doi:10.1038/embor.2012.88
  • Tian B, Geiger B, Epstein DL, Kaufman PL. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci. 2000;41(3):619–623.
  • Bermudez JY, Montecchi-Palmer M, Mao W, Clark AF. Cross-linked actin networks (CLANs) in glaucoma. Exp Eye Res. 2017;159:16–22. doi:10.1016/j.exer.2017.02.010
  • Dhamodaran K, Baidouri H, Sandoval L, Raghunathan V. Wnt activation after inhibition restores trabecular meshwork cells toward a normal phenotype. Invest Ophthalmol Vis Sci. 2020;61(6):30. doi:10.1167/iovs.61.6.30
  • Apostolopoulos J, Sparrow RL, McLeod JL, et al. Identification and characterization of a novel family of mammalian ependymin-related proteins (MERPs) in hematopoietic, nonhematopoietic, and malignant tissues. DNA Cell Biol. 2001;20(10):625–635. doi:10.1089/104454901753340613
  • Wei Y, Xiong ZJ, Li J, et al. Crystal structures of human lysosomal EPDR1 reveal homology with the superfamily of bacterial lipoprotein transporters. Commun Biol. 2019;2:52. doi:10.1038/s42003-018-0262-9
  • Ng M, Thakkar D, Southam L, et al. A genome-wide association study of dupuytren disease reveals 17 additional variants implicated in fibrosis. Am J Hum Genet. 2017;101(3):417–427. doi:10.1016/j.ajhg.2017.08.006
  • Petty HR. Frontiers of complex disease mechanisms: membrane surface tension may link genotype to phenotype in glaucoma. Front Cell Dev Biol. 2018;6:32. doi:10.3389/fcell.2018.00032
  • Kim YS, Nakanishi G, Lewandoski M, Jetten AM. GLIS3, a novel member of the GLIS subfamily of Kruppel-like zinc finger proteins with repressor and activation functions. Nucleic Acids Res. 2003;31(19):5513–5525. doi:10.1093/nar/gkg776
  • Lichti-Kaiser K, ZeRuth G, Jetten AM. Transcription factor Gli-Similar 3 (Glis3): implications for the development of congenital hypothyroidism. J Endocrinol Diabetes Obes. 2014;2(2):1024.
  • Jeon K, Kumar D, Conway AE, Park K, Jothi R, Jetten AM. GLIS3 transcriptionally activates WNT genes to promote differentiation of human embryonic stem cells into posterior neural progenitors. Stem Cells. 2019;37(2):202–215. doi:10.1002/stem.2941
  • Wen X, Yang Y. Emerging roles of GLIS3 in neonatal diabetes, type 1 and type 2 diabetes. J Mol Endocrinol. 2017;58(2):R73–R85. doi:10.1530/JME-16-0232
  • Rurale G, Persani L, Marelli F. GLIS3 and thyroid: a pleiotropic candidate gene for congenital hypothyroidism. Front Endocrinol (Lausanne). 2018;9:730. doi:10.3389/fendo.2018.00730
  • Chou CK, Tang CJ, Chou HL, et al. The potential role of kruppel-like zinc-finger protein Glis3 in genetic diseases and cancers. Arch Immunol Ther Exp (Warsz). 2017;65(5):381–389. doi:10.1007/s00005-017-0470-x
  • Calderari S, Ria M, Gerard C, et al. Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons. Genomics. 2018;110(2):98–111. doi:10.1016/j.ygeno.2017.09.001
  • Nogueira TC, Paula FM, Villate O, et al. GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet. 2013;9(5):e1003532. doi:10.1371/journal.pgen.1003532
  • Nakamura M, Kanamori A, Negi A. Diabetes mellitus as a risk factor for glaucomatous optic neuropathy. Ophthalmologica. 2005;219(1):1–10. doi:10.1159/000081775
  • Zhao D, Cho J, Kim MH, Friedman DS, Guallar E. Diabetes, fasting glucose, and the risk of glaucoma: a meta-analysis. Ophthalmology. 2015;122(1):72–78. doi:10.1016/j.ophtha.2014.07.051
  • Barone R, Aiello C, Race V, et al. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol. 2012;72(4):550–558. doi:10.1002/ana.23632
  • Sienkiewicz AE, Rosenberg BN, Edwards G, Carreon TA, Bhattacharya SK. Aberrant glycosylation in the human trabecular meshwork. Proteomics Clin Appl. 2014;8(3–4):130–142. doi:10.1002/prca.201300031
  • Wang DY, Fulthorpe R, Liss SN, Edwards EA. Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol Endocrinol. 2004;18(2):402–411. doi:10.1210/me.2003-0202
  • Ulhaq ZS. The association of estrogen-signaling pathways and susceptibility to open-angle glaucoma. Beni-Suef Univ J Basic Appl Sci. 2020;9(1):7. doi:10.1186/s43088-020-0034-8
  • Choi HK, Kang HR, Jung E, Kim TE, Lin JJ, Lee SY. Early estrogen-induced gene 1, a novel RANK signaling component, is essential for osteoclastogenesis. Cell Res. 2013;23(4):524–536. doi:10.1038/cr.2013.33
  • Shi L, Zhao M, Luo Q, et al. Overexpression of PIP5KL1 suppresses cell proliferation and migration in human gastric cancer cells. Mol Biol Rep. 2010;37(5):2189–2198. doi:10.1007/s11033-009-9701-5
  • Lachkar Y, Bouassida W. Drug-induced acute angle closure glaucoma. Curr Opin Ophthalmol. 2007;18(2):129–133. doi:10.1097/ICU.0b013e32808738d5
  • Mandak JS, Minerva P, Wilson TW, Smith EK. Angle closure glaucoma complicating systemic atropine use in the cardiac catheterization laboratory. Cathet Cardiovasc Diagn. 1996;39(3):262–264. doi:10.1002/(SICI)1097-0304(199611)39:3<262::AID-CCD11>3.0.CO;2-H
  • Eckenstein F, Thoenen H. Production of specific antisera and monoclonal antibodies to choline acetyltransferase: characterization and use for identification of cholinergic neurons. EMBO J. 1982;1(3):363–368. doi:10.1002/j.1460-2075.1982.tb01175.x
  • Voigt T. Cholinergic amacrine cells in the rat retina. J Comp Neurol. 1986;248(1):19–35. doi:10.1002/cne.902480103
  • Tooyama I, Kimura H. A protein encoded by an alternative splice variant of choline acetyltransferase mRNA is localized preferentially in peripheral nerve cells and fibers. J Chem Neuroanat. 2000;17(4):217–226. doi:10.1016/S0891-0618(99)00043-5
  • Yasuhara O, Tooyama I, Aimi Y, et al. Demonstration of cholinergic ganglion cells in rat retina: expression of an alternative splice variant of choline acetyltransferase. J Neurosci. 2003;23(7):2872–2881. doi:10.1523/JNEUROSCI.23-07-02872.2003
  • Koistinaho J, Sagar SM. Light-induced c-fos expression in amacrine cells in the rabbit retina. Brain Res Mol Brain Res. 1995;29(1):53–63. doi:10.1016/0169-328X(94)00218-4
  • McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ. 2007;71(4):78. doi:10.5688/aj710478
  • McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol. 2015;5(1):439–473.
  • Neuhuber W, Schrodl F. Autonomic control of the eye and the iris. Auton Neurosci. 2011;165(1):67–79.
  • Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: from basic science to clinical applications. Prog Retin Eye Res. 2019;72:100767.
  • Shi H, Zhu R, Hu N, et al. An extensive replication study on three new susceptibility Loci of primary angle closure glaucoma in han chinese: Jiangsu eye study. J Ophthalmol. 2013;2013:641596. doi:10.1155/2013/641596
  • Rong SS, Tang FY, Chu WK, et al. Genetic associations of primary angle-closure disease: a systematic review and meta-analysis. Ophthalmology. 2016;123(6):1211–1221. doi:10.1016/j.ophtha.2015.12.027
  • Wan Y, Li S, Gao Y, Tang L, Cao W, Sun X. COL11A1 polymorphisms are associated with primary angle-closure glaucoma severity. J Ophthalmol. 2019;2019:2604386. doi:10.1155/2019/2604386
  • Awadalla MS, Thapa SS, Hewitt AW, Burdon KP, Craig JE. Association of genetic variants with primary angle closure glaucoma in two different populations. PLoS One. 2013;8(6):e67903. doi:10.1371/journal.pone.0067903
  • Shuai P, Yu M, Li X, et al. Genetic associations in PLEKHA7 and COL11A1 with primary angle closure glaucoma: a meta-analysis. Clin Exp Ophthalmol. 2015;43(6):523–530. doi:10.1111/ceo.12516
  • Yousefian A, Shokoohi-Rad S, Abbaszadegan MR, et al. Primary angle closure glaucoma-associated genetic polymorphisms in Northeast Iran. J Ophthalmic Vis Res. 2020;15(1):45–52. doi:10.18502/jovr.v15i1.5942
  • Wong TT, Sethi C, Daniels JT, Limb GA, Murphy G, Khaw PT. Matrix metalloproteinases in disease and repair processes in the anterior segment. Surv Ophthalmol. 2002;47(3):239–256.
  • De Groef L, Andries L, Siwakoti A, et al. Aberrant collagen composition of the trabecular meshwork results in reduced aqueous humor drainage and elevated IOP in MMP-9 null mice. Invest Ophthalmol Vis Sci. 2016;57(14):5984–5995. doi:10.1167/iovs.16-19734
  • St Jean PL, Zhang XC, Hart BK, et al. Characterization of a dinucleotide repeat in the 92 kDa type IV collagenase gene (CLG4B), localization of CLG4B to chromosome 20 and the role of CLG4B in aortic aneurysmal disease. Ann Hum Genet. 1995;59(1):17–24. doi:10.1111/j.1469-1809.1995.tb01602.x
  • Wang IJ, Chiang TH, Shih YF, et al. The association of single nucleotide polymorphisms in the MMP-9 genes with susceptibility to acute primary angle closure glaucoma in Taiwanese patients. Mol Vis. 2006;12:1223–1232.
  • Shi H, Zhu R, Hu N, et al. Association of frizzled-related protein (MFRP) and heat shock protein 70 (HSP70) single nucleotide polymorphisms with primary angle closure in a Han Chinese population: Jiangsu eye study. Mol Vis. 2013;19:128–134.
  • Aung T, Yong VH, Lim MC, et al. Lack of association between the rs2664538 polymorphism in the MMP-9 gene and primary angle closure glaucoma in Singaporean subjects. J Glaucoma. 2008;17(4):257–258. doi:10.1097/IJG.0b013e31815c3aa5
  • Awadalla MS, Burdon KP, Kuot A, Hewitt AW, Craig JE. Matrix metalloproteinase-9 genetic variation and primary angle closure glaucoma in a Caucasian population. Mol Vis. 2011;17:1420–1424.
  • Thakur N, Kupani M, Pandey RK, Mannan R, Pruthi A, Mehrotra S. Genetic association of −1562C>T polymorphism in the MMP9 gene with primary glaucoma in a north Indian population. PLoS One. 2018;13(2):e0192636. doi:10.1371/journal.pone.0192636
  • Micheal S, Yousaf S, Khan MI, et al. Polymorphisms in matrix metalloproteinases MMP1 and MMP9 are associated with primary open-angle and angle closure glaucoma in a Pakistani population. Mol Vis. 2013;19:441–447.
  • Chen X, Chen Y, Wiggs JL, Pasquale LR, Sun X, Fan BJ. Association of matrix metalloproteinase-9 (MMP9) variants with primary angle closure and primary angle closure glaucoma. PLoS One. 2016;11(6):e0157093. doi:10.1371/journal.pone.0157093
  • Gao XJ, Hou SP, Li PH. The association between matrix metalloprotease-9 gene polymorphisms and primary angle-closure glaucoma in a Chinese Han population. Int J Ophthalmol. 2014;7(3):397–402. doi:10.3980/j.issn.2222-3959.2014.03.02
  • Cong Y, Guo X, Liu X, et al. Association of the single nucleotide polymorphisms in the extracellular matrix metalloprotease-9 gene with PACG in southern China. Mol Vis. 2009;15:1412–1417.
  • Harper AR, Summers JA. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res. 2015;133:100–111. doi:10.1016/j.exer.2014.07.015
  • Aliancy J, Stamer WD, Wirostko BA. Review of nitric oxide for the treatment of glaucomatous disease. Ophthalmol Ther. 2017;6(2):221–232. doi:10.1007/s40123-017-0094-6
  • Chang JY, Stamer WD, Bertrand J, et al. Role of nitric oxide in murine conventional outflow physiology. Am J Physiol Cell Physiol. 2015;309(4):C205–214. doi:10.1152/ajpcell.00347.2014
  • Toda N, Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res. 2007;26(3):205–238. doi:10.1016/j.preteyeres.2007.01.004
  • Wink DA, Miranda KM, Espey MG, et al. Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal. 2001;3(2):203–213. doi:10.1089/152308601300185179
  • Manabe S, Lipton SA. Divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Invest Ophthalmol Vis Sci. 2003;44(1):385–392. doi:10.1167/iovs.02-0187
  • Ayub H, Khan MI, Micheal S, et al. Association of eNOS and HSP70 gene polymorphisms with glaucoma in Pakistani cohorts. Mol Vis. 2010;16:18–25.
  • Awadalla MS, Thapa SS, Hewitt AW, Craig JE, Burdon KP. Association of eNOS polymorphisms with primary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 2013;54(3):2108–2114. doi:10.1167/iovs.12-11391
  • Shi H, Zhu R, Hu N, et al. Association of eNOS polymorphisms with anterior chamber depth in han chinese: Jiangsu eye study. J Ophthalmol. 2014;2014:164104. doi:10.1155/2014/164104
  • Liao Q, Wang DH, Sun HJ. Association of genetic polymorphisms of eNOS with glaucoma. Mol Vis. 2011;17:153–158.
  • Piri N, Kwong JM, Gu L, Caprioli J. Heat shock proteins in the retina: focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res. 2016;52:22–46.
  • He M, Guo H, Yang X, et al. Functional SNPs in HSPA1A gene predict risk of coronary heart disease. PLoS One. 2009;4(3):e4851. doi:10.1371/journal.pone.0004851
  • Lee KJ, Kim YM, Kim DY, et al. Release of heat shock protein 70 (Hsp70) and the effects of extracellular Hsp70 on matric metalloproteinase-9 expression in human monocytic U937 cells. Exp Mol Med. 2006;38(4):364–374. doi:10.1038/emm.2006.43
  • Zhang Y, Xia M, Jin K, et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17(1):45. doi:10.1186/s12943-018-0796-y
  • Previdi S, Maroni P, Matteucci E, Broggini M, Bendinelli P, Desiderio MA. Interaction between human-breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and beta-catenin/Wnt pathways. Eur J Cancer. 2010;46(9):1679–1691. doi:10.1016/j.ejca.2010.02.036
  • Webber HC, Bermudez JY, Millar JC, Mao W, Clark AF. The role of Wnt/beta-catenin signaling and K-cadherin in the regulation of intraocular pressure. Invest Ophthalmol Vis Sci. 2018;59(3):1454–1466. doi:10.1167/iovs.17-21964
  • Wordinger RJ, Clark AF, Agarwal R, et al. Cultured human trabecular meshwork cells express functional growth factor receptors. Invest Ophthalmol Vis Sci. 1998;39(9):1575–1589.
  • Hu DN, Ritch R. Hepatocyte growth factor is increased in the aqueous humor of glaucomatous eyes. J Glaucoma. 2001;10(3):152–157. doi:10.1097/00061198-200106000-00002
  • Jin M, Chen Y, He S, Ryan SJ, Hinton DR. Hepatocyte growth factor and its role in the pathogenesis of retinal detachment. Invest Ophthalmol Vis Sci. 2004;45(1):323–329. doi:10.1167/iovs.03-0355
  • Tonges L, Ostendorf T, Lamballe F, et al. Hepatocyte growth factor protects retinal ganglion cells by increasing neuronal survival and axonal regeneration in vitro and in vivo. J Neurochem. 2011;117(5):892–903. doi:10.1111/j.1471-4159.2011.07257.x
  • Wong WK, Cheung AW, Yu SW, Sha O, Cho EY. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF. CNS Neurosci Ther. 2014;20(10):916–929. doi:10.1111/cns.12304
  • Veerappan S, Pertile KK, Islam AF, et al. Role of the hepatocyte growth factor gene in refractive error. Ophthalmology. 2010;117(2):239–245e231–232. doi:10.1016/j.ophtha.2009.07.002
  • Awadalla MS, Thapa SS, Burdon KP, Hewitt AW, Craig JE. The association of hepatocyte growth factor (HGF) gene with primary angle closure glaucoma in the Nepalese population. Mol Vis. 2011;17:2248–2254.
  • Jiang Z, Liang K, Ding B, et al. Hepatocyte growth factor genetic variations and primary angle-closure glaucoma in the Han Chinese population. PLoS One. 2013;8(4):e60950. doi:10.1371/journal.pone.0060950
  • Ayala-Ramirez R, Graue-Wiechers F, Robredo V, Amato-Almanza M, Horta-Diez I, Zenteno JC. A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. Mol Vis. 2006;12:1483–1489.
  • Sundin OH, Leppert GS, Silva ED, et al. Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc Natl Acad Sci U S A. 2005;102(27):9553–9558. doi:10.1073/pnas.0501451102
  • Wang P, Yang Z, Li S, Xiao X, Guo X, Zhang Q. Evaluation of MFRP as a candidate gene for high hyperopia. Mol Vis. 2009;15:181–186.
  • Wasmann RA, Wassink-Ruiter JS, Sundin OH, Morales E, Verheij JB, Pott JW. Novel membrane frizzled-related protein gene mutation as cause of posterior microphthalmia resulting in high hyperopia with macular folds. Acta Ophthalmol. 2014;92(3):276–281. doi:10.1111/aos.12105
  • Sundin OH, Dharmaraj S, Bhutto IA, et al. Developmental basis of nanophthalmos: MFRP Is required for both prenatal ocular growth and postnatal emmetropization. Ophthalmic Genet. 2008;29(1):1–9. doi:10.1080/13816810701651241
  • Wang IJ, Lin S, Chiang TH, et al. The association of membrane frizzled-related protein (MFRP) gene with acute angle-closure glaucoma–a pilot study. Mol Vis. 2008;14:1673–1679.
  • Aung T, Lim MC, Wong TT, et al. Molecular analysis of CHX10 and MFRP in Chinese subjects with primary angle closure glaucoma and short axial length eyes. Mol Vis. 2008;14:1313–1318.
  • Awadalla MS, Burdon KP, Thapa SS, Hewitt AW, Craig JE. A cross-ethnicity investigation of genes previously implicated in primary angle closure glaucoma. Mol Vis. 2012;18:2247–2254.
  • Mandal MN, Vasireddy V, Jablonski MM, et al. Spatial and temporal expression of MFRP and its interaction with CTRP5. Invest Ophthalmol Vis Sci. 2006;47(12):5514–5521. doi:10.1167/iovs.06-0449
  • Katoh M. Molecular cloning and characterization of MFRP, a novel gene encoding a membrane-type Frizzled-related protein. Biochem Biophys Res Commun. 2001;282(1):116–123. doi:10.1006/bbrc.2001.4551
  • Soundararajan R, Won J, Stearns TM, et al. Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs. PLoS One. 2014;9(10):e110299. doi:10.1371/journal.pone.0110299
  • Iseri SU, Wyatt AW, Nurnberg G, et al. Use of genome-wide SNP homozygosity mapping in small pedigrees to identify new mutations in VSX2 causing recessive microphthalmia and a semidominant inner retinal dystrophy. Hum Genet. 2010;128(1):51–60. doi:10.1007/s00439-010-0823-6
  • Reis LM, Khan A, Kariminejad A, Ebadi F, Tyler RC, Semina EV. VSX2 mutations in autosomal recessive microphthalmia. Mol Vis. 2011;17:2527–2532.
  • Awadalla MS, Burdon KP, Souzeau E, et al. Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12. JAMA Ophthalmol. 2014;132(8):970–977. doi:10.1001/jamaophthalmol.2014.946
  • Wagner AH, Anand VN, Wang WH, et al. Exon-level expression profiling of ocular tissues. Exp Eye Res. 2013;111:105–111. doi:10.1016/j.exer.2013.03.004
  • Micheal S, Qamar R, Akhtar F, Khan MI, Khan WA, Ahmed A. MTHFR gene C677T and A1298C polymorphisms and homocysteine levels in primary open angle and primary closed angle glaucoma. Mol Vis. 2009;15:2268–2278.
  • Gupta S, Bhaskar PK, Bhardwaj R, et al. MTHFR C677T predisposes to POAG but not to PACG in a North Indian population: a case control study. PLoS One. 2014;9(7):e103063. doi:10.1371/journal.pone.0103063
  • Passan S, Goyal S, Bhat MA, Singh D, Vanita V. Association of TNF-alpha gene alterations (c.-238G>A, c.-308G>A, c.-857C>T, c.-863C>A) with primary glaucoma in north Indian cohort. Gene. 2019;709:25–35. doi:10.1016/j.gene.2019.05.035
  • Karasinska JM, de Haan W, Franciosi S, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445–455. doi:10.1016/j.nbd.2013.01.018
  • Luo H, Chen Y, Ye Z, et al. Evaluation of the association between common genetic variants near the ABCA1 gene and primary angle closure glaucoma in a Han Chinese population. Invest Ophthalmol Vis Sci. 2015;56(11):6248–6254. doi:10.1167/iovs.15-16741
  • Alkhatib R, Abudhaim N, Al-Eitan L, Abdo N, Alqudah A, Aman H. Genetic analysis of ABCA1 gene of primary glaucoma in Jordanian Arab population. Appl Clin Genet. 2019;12:181–189. doi:10.2147/TACG.S213818
  • Wang SL, Piao SY, Xu MY, et al. Evaluating correlation between the ocular biometry and genetic variants of MYOC and ABCA1 with primary angle-closure glaucoma in a cohort from northern China. Int J Ophthalmol. 2019;12(8):1317–1322. doi:10.18240/ijo.2019.08.13
  • Abu-Amero KK, Morales J, Osman MN, Bosley TM. Nuclear and mitochondrial analysis of patients with primary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 2007;48(12):5591–5596. doi:10.1167/iovs.07-0780
  • Dai X, Nie S, Ke T, Liu J, Wang Q, Liu M. [Two variants in MYOC and CYP1B1 genes in a Chinese family with primary angle-closure glaucoma]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008;25(5):493–496. Chinese.
  • Aung T, Yong VH, Chew PT, et al. Molecular analysis of the myocilin gene in Chinese subjects with chronic primary-angle closure glaucoma. Invest Ophthalmol Vis Sci. 2005;46(4):1303–1306. doi:10.1167/iovs.04-1163
  • Faucher M, Anctil JL, Rodrigue MA, et al. Founder TIGR/myocilin mutations for glaucoma in the Quebec population. Hum Mol Genet. 2002;11(18):2077–2090. doi:10.1093/hmg/11.18.2077
  • Jin X, Wang D-J, Qu L-H, Hou B-K, Gong Y, Xu -W-W. Haplotype analysis of association of the MYOC gene with primary angle-closure glaucoma in a Han Chinese population. Genet Test Mol Biomarkers. 2015;19(1):3–8. doi:10.1089/gtmb.2014.0130
  • Chakrabarti S, Devi KR, Komatireddy S, et al. Glaucoma-associated CYP1B1 mutations share similar haplotype backgrounds in POAG and PACG phenotypes. Invest Ophthalmol Vis Sci. 2007;48(12):5439–5444. doi:10.1167/iovs.07-0629
  • Yazdani S, Elahi E, Safari I, Akbarian S. A possible role for LTBP2 in the etiology of primary angle closure glaucoma. J Ophthalmic Vis Res. 2015;10(2):123–129. doi:10.4103/2008-322X.163783
  • Abu-Amero KK, Azad TA, Mousa A, Osman EA, Sultan T, Al-Obeidan SA. Association of SOD2 mutation (c.47T > C) with various primary angle closure glaucoma clinical indices. Ophthalmic Genet. 2015;36(2):180–183. doi:10.3109/13816810.2013.838276
  • Abu-Amero KK, Azad TA, Mousa A, Osman EA, Sultan T, Al-Obeidan SA. A catalase promoter variant rs1001179 is associated with visual acuity but not with primary angle closure glaucoma in Saudi patients. BMC Med Genet. 2013;14:84. doi:10.1186/1471-2350-14-84
  • Abu-Amero KK, Morales J, Mohamed GH, Osman MN, Bosley TM. Glutathione S-transferase M1 and T1 polymorphisms in Arab glaucoma patients. Mol Vis. 2008;14:425–430.
  • Abu-Amero KK, Gonzalez AM, Osman EA, Larruga JM, Cabrera VM, Al-Obeidan SA. Susceptibility to primary angle closure glaucoma in Saudi Arabia: the possible role of mitochondrial DNA ancestry informative haplogroups. Mol Vis. 2011;17:2171–2176.
  • Al-Dabbagh N, Al-Shahrani H, Al-Dohayan N, Mustafa M, Arfin M, Al-Asmari AK. The SPARC-related modular calcium binding protein 2 (SMOC2) gene polymorphism in primary glaucoma: a case-control study. Clin Ophthalmol. 2017;11:549–555. doi:10.2147/OPTH.S126459
  • Chua J, Seet LF, Jiang Y, et al. Increased SPARC expression in primary angle closure glaucoma iris. Mol Vis. 2008;14:1886–1892.
  • Kondkar AA, Sultan T, Azad TA, Osman EA, Almobarak FA, Al-Obeidan SA. Association analysis of polymorphisms rs12997 in ACVR1 and rs1043784 in BMP6 genes involved in bone morphogenic protein signaling pathway in primary angle-closure and pseudoexfoliation glaucoma patients of Saudi origin. BMC Med Genet. 2020;21(1):145. doi:10.1186/s12881-020-01076-0
  • Verma SS, Cooke Bailey JN, Lucas A, et al. Epistatic gene-based interaction analyses for glaucoma in eMERGE and NEIGHBOR Consortium. PLoS Genet. 2016;12(9):e1006186. doi:10.1371/journal.pgen.1006186
  • Mansoori T, Balakrishna N. Anterior segment morphology in primary angle closure glaucoma using ultrasound biomicroscopy. J Curr Glaucoma Pract. 2017;11(3):86–91.
  • Nongpiur ME, Khor CC, Jia H, et al. ABCC5, a gene that influences the anterior chamber depth, is associated with primary angle closure glaucoma. PLoS Genet. 2014;10(3):e1004089. doi:10.1371/journal.pgen.1004089
  • Tang FY, Ma L, Tam POS, Pang CP, Tham CC, Chen LJ. Genetic association of the PARL-ABCC5-HTR3D-HTR3C locus with primary angle-closure glaucoma in Chinese. Invest Ophthalmol Vis Sci. 2017;58(10):4384–4389. doi:10.1167/iovs.17-22304
  • Wang S, Zhuang W, Zhang W, et al. The association of single nucleotide polymorphisms in ABCC5 gene with primary angle closure glaucoma and the ocular biometric parameters in a Northern Chinese Population. Ophthalmic Res. 2020. doi:10.1159/000511454
  • Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem. 2000;275(39):30069–30074. doi:10.1074/jbc.M005463200
  • Wielinga P, Hooijberg JH, Gunnarsdottir S, et al. The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Res. 2005;65(10):4425–4430. doi:10.1158/0008-5472.CAN-04-2810
  • Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18(7):452–464. doi:10.1038/s41568-018-0005-8
  • Jansen RS, Mahakena S, de Haas M, Borst P, van de Wetering K. ATP-binding cassette subfamily C member 5 (ABCC5) functions as an efflux transporter of glutamate conjugates and analogs. J Biol Chem. 2015;290(51):30429–30440. doi:10.1074/jbc.M115.692103
  • Karla PK, Quinn TL, Herndon BL, Thomas P, Pal D, Mitra A. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux. J Ocul Pharmacol Ther. 2009;25(2):121–132. doi:10.1089/jop.2008.0084
  • Long Y, Li Q, Li J, Cui Z. Molecular analysis, developmental function and heavy metal-induced expression of ABCC5 in zebrafish. Comp Biochem Physiol B Biochem Mol Biol. 2011;158(1):46–55. doi:10.1016/j.cbpb.2010.09.005
  • Fang F, Pan M, Yan T, et al. The role of cGMP in ocular growth and the development of form-deprivation myopia in guinea pigs. Invest Ophthalmol Vis Sci. 2013;54(13):7887–7902. doi:10.1167/iovs.13-11999
  • Direk K, Lau W, Small KS, Maniatis N, Andrew T. ABCC5 transporter is a novel type 2 diabetes susceptibility gene in European and African American populations. Ann Hum Genet. 2014;78(5):333–344. doi:10.1111/ahg.12072
  • Cyranka M, Veprik A, McKay EJ, et al. Abcc5 knockout mice have lower fat mass and increased levels of circulating GLP-1. Obesity (Silver Spring). 2019;27(8):1292–1304. doi:10.1002/oby.22521
  • Hernandez C, Bogdanov P, Corraliza L, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes. 2016;65(1):172–187. doi:10.2337/db15-0443
  • Zhang R, Zhang H, Xu L, Ma K, Wallrapp C, Jonas JB. Neuroprotective effect of intravitreal cell-based glucagon-like peptide-1 production in the optic nerve crush model. Acta Ophthalmol. 2011;89(4):e320–326. doi:10.1111/j.1755-3768.2010.02044.x
  • Day AC, Luben R, Khawaja AP, et al. Genotype-phenotype analysis of SNPs associated with primary angle closure glaucoma (rs1015213, rs3753841 and rs11024102) and ocular biometry in the EPIC-Norfolk Eye Study. Br J Ophthalmol. 2013;97(6):704–707. doi:10.1136/bjophthalmol-2012-302969
  • Nongpiur ME, Wei X, Xu L, et al. Lack of association between primary angle-closure glaucoma susceptibility loci and the ocular biometric parameters anterior chamber depth and axial length. Invest Ophthalmol Vis Sci. 2013;54(8):5824–5828. doi:10.1167/iovs.13-11901
  • Khawaja AP, Cooke Bailey JN, Wareham NJ, et al. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat Genet. 2018;50(6):778–782. doi:10.1038/s41588-018-0126-8
  • MacGregor S, Ong JS, An J, et al. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nat Genet. 2018;50(8):1067–1071. doi:10.1038/s41588-018-0176-y
  • Wei X, Nongpiur ME, de Leon MS, et al. Genotype-phenotype correlation analysis for three primary angle closure glaucoma-associated genetic polymorphisms. Invest Ophthalmol Vis Sci. 2014;55(2):1143–1148. doi:10.1167/iovs.13-13552
  • Zhuang W, Wang S, Hao J, et al. Genotype-ocular biometry correlation analysis of eight primary angle closure glaucoma susceptibility loci in a cohort from Northern China. PLoS One. 2018;13(11):e0206935. doi:10.1371/journal.pone.0206935
  • Liu C, Nongpiur ME, Cheng CY, et al. Evaluation of primary angle-closure glaucoma susceptibility loci for estimating angle closure disease severity. Ophthalmology. 2020.
  • Cheng CY, Schache M, Ikram MK, et al. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. Am J Hum Genet. 2013;93(2):264–277. doi:10.1016/j.ajhg.2013.06.016
  • Suri F, Yazdani S, Chapi M, et al. COL18A1 is a candidate eye iridocorneal angle-closure gene in humans. Hum Mol Genet. 2018;27(21):3772–3786. doi:10.1093/hmg/ddy256
  • Sertie AL, Quimby M, Moreira ES, et al. A gene which causes severe ocular alterations and occipital encephalocele (Knobloch syndrome) is mapped to 21q22.3. Hum Mol Genet. 1996;5(6):843–847. doi:10.1093/hmg/5.6.843
  • Menzel O, Bekkeheien RC, Reymond A, et al. Knobloch syndrome: novel mutations in COL18A1, evidence for genetic heterogeneity, and a functionally impaired polymorphism in endostatin. Hum Mutat. 2004;23(1):77–84. doi:10.1002/humu.10284
  • Keren B, Suzuki OT, Gerard-Blanluet M, et al. CNS malformations in Knobloch syndrome with splice mutation in COL18A1 gene. Am J Med Genet A. 2007;143A(13):1514–1518. doi:10.1002/ajmg.a.31784
  • Paisan-Ruiz C, Scopes G, Lee P, Houlden H. Homozygosity mapping through whole genome analysis identifies a COL18A1 mutation in an Indian family presenting with an autosomal recessive neurological disorder. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(7):993–997. doi:10.1002/ajmg.b.30929
  • Khaliq S, Abid A, White DR, et al. Mapping of a novel type III variant of Knobloch syndrome (KNO3) to chromosome 17q11.2. Am J Med Genet A. 2007;143A(23):2768–2774. doi:10.1002/ajmg.a.31739
  • Joyce S, Tee L, Abid A, Khaliq S, Mehdi SQ, Maher ER. Locus heterogeneity and Knobloch syndrome. Am J Med Genet A. 2010;152A(11):2880–2881. doi:10.1002/ajmg.a.33619
  • Vithana EN, Aung T, Khor CC, et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet. 2011;20(4):649–658. doi:10.1093/hmg/ddq511
  • Elamaa H, Snellman A, Rehn M, Autio-Harmainen H, Pihlajaniemi T. Characterization of the human type XVIII collagen gene and proteolytic processing and tissue location of the variant containing a frizzled motif. Matrix Biol. 2003;22(5):427–442. doi:10.1016/S0945-053X(03)00073-8
  • Fuhrmann S. Wnt signaling in eye organogenesis. Organogenesis. 2008;4(2):60–67. doi:10.4161/org.4.2.5850
  • Waseem NH, Low S, Shah AZ, et al. Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma. PLoS Genet. 2020;16(4):e1008721. doi:10.1371/journal.pgen.1008721
  • Bristow JM, Sellers MH, Majumdar D, Anderson B, Hu L, Webb DJ. The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. J Cell Sci. 2009;122(Pt 24):4535–4546. doi:10.1242/jcs.053728
  • Sagara M, Kawasaki Y, Iemura S-I, Natsume T, Takai Y, Akiyama AT. Asef2 and Neurabin2 cooperatively regulate actin cytoskeletal organization and are involved in HGF-induced cell migration. Oncogene. 2009;28(10):1357–1365. doi:10.1038/onc.2008.478
  • Ahonen SJ, Pietila E, Mellersh CS, et al. Genome-wide association study identifies a novel canine glaucoma locus. PLoS One. 2013;8(8):e70903. doi:10.1371/journal.pone.0070903
  • Ahram DF, Cook AC, Kecova H, Grozdanic SD, Kuehn MH. Identification of genetic loci associated with primary angle-closure glaucoma in the basset hound. Mol Vis. 2014;20:497–510.
  • Ahram DF, Grozdanic SD, Kecova H, Henkes A, Collin RW, Kuehn MH. Variants in nebulin (NEB) are linked to the development of familial primary angle closure glaucoma in Basset Hounds. PLoS One. 2015;10(5):e0126660. doi:10.1371/journal.pone.0126660
  • Oliver JAC, Ricketts SL, Kuehn MH, Mellersh CS. Primary closed angle glaucoma in the Basset Hound: genetic investigations using genome-wide association and RNA sequencing strategies. Mol Vis. 2019;25:93–105.
  • Axenovich T, Zorkoltseva I, Belonogova N, et al. Linkage and association analyses of glaucoma related traits in a large pedigree from a Dutch genetically isolated population. J Med Genet. 2011;48(12):802–809. doi:10.1136/jmedgenet-2011-100436
  • Nair KS, Hmani-Aifa M, Ali Z, et al. Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice. Nat Genet. 2011;43(6):579–584. doi:10.1038/ng.813
  • Labelle-Dumais C, Pyatla G, Paylakhi S, et al. Loss of PRSS56 function leads to ocular angle defects and increased susceptibility to high intraocular pressure. Dis Model Mech. 2020;13(5):dmm042853. doi:10.1242/dmm.042853
  • Ittner LM, Schwerdtfeger K, Kunz TH, et al. Transgenic mice with ocular overexpression of an adrenomedullin receptor reflect human acute angle-closure glaucoma. Clin Sci (Lond). 2008;114(1):49–58. doi:10.1042/CS20070163
  • Yousufzai SY, Ali N, Abdel-Latif AA. Effects of adrenomedullin on cyclic AMP formation and on relaxation in iris sphincter smooth muscle. Invest Ophthalmol Vis Sci. 1999;40(13):3245–3253.
  • McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393(6683):333–339. doi:10.1038/30666
  • Cao D, Liu X, Guo X, Cong Y, Huang J, Mao Z. Investigation of the association between CALCRL polymorphisms and primary angle closure glaucoma. Mol Vis. 2009;15:2202–2208.
  • Wang B, Sakata LM, Friedman DS, et al. Quantitative iris parameters and association with narrow angles. Ophthalmology. 2010;117(1):11–17. doi:10.1016/j.ophtha.2009.06.017
  • Wang BS, Narayanaswamy A, Amerasinghe N, et al. Increased iris thickness and association with primary angle closure glaucoma. Br J Ophthalmol. 2011;95(1):46–50. doi:10.1136/bjo.2009.178129
  • Seet LF, Narayanaswamy A, Finger SN, et al. Distinct iris gene expression profiles of primary angle closure glaucoma and primary open angle glaucoma and their interaction with ocular biometric parameters. Clin Exp Ophthalmol. 2016;44(8):684–692. doi:10.1111/ceo.12743
  • He M, Lu Y, Liu X, Ye T, Foster PJ. Histologic changes of the iris in the development of angle closure in Chinese eyes. J Glaucoma. 2008;17(5):386–392. doi:10.1097/IJG.0b013e31815c5f69
  • Bradshaw AD. The role of SPARC in extracellular matrix assembly. J Cell Commun Signal. 2009;3(3–4):239–246. doi:10.1007/s12079-009-0062-6
  • Kennedy KD, AnithaChristy SA, Buie LK, Borras T. Cystatin a, a potential common link for mutant myocilin causative glaucoma. PLoS One. 2012;7(5):e36301. doi:10.1371/journal.pone.0036301
  • Nie Q, Zhang X. Transcriptional profiling analysis predicts potential biomarkers for glaucoma: HGF, AKR1B10 and AKR1C3. Exp Ther Med. 2018;16(6):5103–5111. doi:10.3892/etm.2018.6875
  • Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86(4):543–561.
  • Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res. 2015;133:112–125. doi:10.1016/j.exer.2014.07.014
  • Vittal V, Rose A, Gregory KE, Kelley MJ, Acott TS. Changes in gene expression by trabecular meshwork cells in response to mechanical stretching. Invest Ophthalmol Vis Sci. 2005;46(8):2857–2868. doi:10.1167/iovs.05-0075
  • Faralli JA, Schwinn MK, Gonzalez JM, Filla MS, Peters DM. Functional properties of fibronectin in the trabecular meshwork. Exp Eye Res. 2009;88(4):689–693. doi:10.1016/j.exer.2008.08.019
  • Filla MS, Faralli JA, Peotter JL, Peters DM. The role of integrins in glaucoma. Exp Eye Res. 2017;158:124–136. doi:10.1016/j.exer.2016.05.011
  • Filla MS, David G, Weinreb RN, Kaufman PL, Peters DM. Distribution of syndecans 1–4 within the anterior segment of the human eye: expression of a variant syndecan-3 and matrix-associated syndecan-2. Exp Eye Res. 2004;79(1):61–74. doi:10.1016/j.exer.2004.02.010
  • Stringer SE, Gallagher JT. Heparan sulphate. Int J Biochem Cell Biol. 1997;29(5):709–714. doi:10.1016/S1357-2725(96)00170-7
  • Teng YH, Aquino RS, Park PW. Molecular functions of syndecan-1 in disease. Matrix Biol. 2012;31(1):3–16. doi:10.1016/j.matbio.2011.10.001
  • Vanhoutte D, Schellings MW, Gotte M, et al. Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation. 2007;115(4):475–482. doi:10.1161/CIRCULATIONAHA.106.644609