151
Views
1
CrossRef citations to date
0
Altmetric
Original Research

A Novel Allele-Specific PCR Protocol for the Detection of the HLA-C*03:02 Allele, a Pharmacogenetic Marker, in Vietnamese Kinh People

ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 27-35 | Published online: 09 Feb 2021

References

  • Campochiaro C. Allopurinol-induced severe cutaneous adverse reactions. Ann Rheum Dis. 2016;75(4):e20. doi:10.1136/annrheumdis-2015-209108
  • Nguyen KD, Tran TN, Nguyen MT, et al. Drug-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in vietnamese spontaneous adverse drug reaction database: a subgroup approach to disproportionality analysis. J Clin Pharm Ther. 2019;44(1):69–77. doi:10.1111/jcpt.12754
  • Saksit N, Tassaneeyakul W, Nakkam N, et al. Risk factors of allopurinol-induced severe cutaneous adverse reactions in a Thai population. Pharmacogenet Genomics. 2017;27(7):255–263. doi:10.1097/FPC.0000000000000285
  • Jung JW, Kim DK, Park HW, et al. An effective strategy to prevent allopurinol-induced hypersensitivity by HLA typing. Genet Med. 2015;17(10):807–814. doi:10.1038/gim.2014.195
  • Hershfield MS, Callaghan JT, Tassaneeyakul W, et al. Clinical pharmacogenetics implementation consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther. 2013;93(2):153–158. doi:10.1038/clpt.2012.209
  • Sukasem C, Jantararoungtong T, Kuntawong P, et al. HLA-B (*) 58:01 for allopurinol-induced cutaneous adverse drug reactions: implication for clinical interpretation in Thailand. Front Pharmacol. 2016;7:186. doi:10.3389/fphar.2016.00186
  • Hung SI, Chung WH, Liou LB, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005;102(11):4134–4139. doi:10.1073/pnas.0409500102
  • Kang HR, Jee YK, Kim YS, et al. Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet Genomics. 2011;21(5):303–307. doi:10.1097/FPC.0b013e32834282b8
  • Hoa BK, Hang NT, Kashiwase K, et al. HLA-A, -B, -C, -DRB1 and -DQB1 alleles and haplotypes in the Kinh population in Vietnam. Tissue Antigens. 2008;71(2):127–134. doi:10.1111/j.1399-0039.2007.00982.x
  • Jiao Y, Li R, Wu C, et al. High-sensitivity HLA typing by saturated tiling capture sequencing (STC-Seq). BMC Genom. 2018;19(1):50. doi:10.1186/s12864-018-4431-5
  • Hajeer AH, Al Balwi MA, Aytül Uyar F, et al. HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies in Saudis using next generation sequencing technique. Tissue Antigens. 2013;82(4):252–258. doi:10.1111/tan.12200
  • Juhos S, Vágó T, Ferriola D, et al. Deriving HLA genotyping from whole genome sequencing data using omixon HLA twin(tm) in G3’s global clinical study. Hum Immunol. 2015;76(Suppl):131. doi:10.1016/j.humimm.2015.07.183
  • Hwang S, Oh HB, Yang JH, et al. Distribution of HLA-A, B, C allele and haplotype frequencies in Koreans. Korean J Lab Med. 2004;24(6):396–404.
  • Peterson T, Bielawny T, Lacap P, et al. Diversity and frequencies of HLA class I and class II genes of an East African population. Open J Genet. 2014;04(2):99–124. doi:10.4236/ojgen.2014.42013
  • Koehler RN, Walsh AM, Sanders-Buell EE, et al. High-throughput high-resolution class I HLA genotyping in East Africa. PLoS One. 2010;5(5):e10751. doi:10.1371/journal.pone.0010751
  • Satapornpong P, Jinda P, Jantararoungtong T, et al. Genetic diversity of HLA class I and class II alleles in Thai populations: contribution to genotype-guided therapeutics. Front Pharmacol. 2020;11:78. doi:10.3389/fphar.2020.00078
  • IPD-IMGT/HLA Database. Cambridgeshire: EMBL-EBI, The Wellcome Genome Campus; 2019. Available from: https://www.ebi.ac.uk/ipd/imgt/hla/. Accessed December 20, 2020.
  • Robinson J, Barker DJ, Georgiou X, et al. IPD-IMGT/HLA database. Nucleic Acids Res. 2019;48(D1):D948–D955.
  • Allcock RJ. The major histocompatibility complex: a paradigm for studies of the human genome. Methods Mol Biol. 2012;882:1–7.
  • Uchiyama K, Kubota F, Ariyoshi N, et al. Development of a simple method for detection of HLA-A* 31: 01 allele. Drug Metab Pharmacokinet. 2013;28(5):435–438. doi:10.2133/dmpk.DMPK-12-NT-136
  • Sita Virakul JN, Kupatawintu P, Kangwanshiratada O, et al. Detection of HLA-B*5801 by in-house PCR-SSP. Proceedings of the 11th Graduate Research Conference; 2010; Thailand: Khon Kaen University.
  • Saksit N, Nakkam N, Konyoung P, et al. Comparison between the HLA-B(*)58: 01 allele and single-nucleotide polymorphisms in chromosome 6 for prediction of allopurinol-induced severe cutaneous adverse reactions. J Immunol Res. 2017;2017:Dec:2738784. doi:10.1155/2017/2738784
  • Nguyen DV, Vidal C, Chu HC, et al. Developing pharmacogenetic screening methods for an emergent country: Vietnam. World Allergy Organ J. 2019;12(5):100037. doi:10.1016/j.waojou.2019.100037
  • In JW, Roh EY, Oh S, et al. Allele and haplotype frequencies of human leukocyte antigen-A, -B, -C, -DRB1, and -DQB1 from sequence-based DNA typing data in Koreans. Ann Lab Med. 2015;35(4):429–435. doi:10.3343/alm.2015.35.4.429
  • Shen J, Guo T, Wang T. HLA-B*07, HLA-DRB1*07, HLA-DRB1*12, and HLA-C*03:02 strongly associate with BMI: data from 1.3 million healthy chinese adults. Diabetes. 2018;67(5):861–871. doi:10.2337/db17-0852
  • Itoh Y, Mizuki N, Shimada T, et al. High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR–SSOP–luminex method in the Japanese population. Immunogenetics. 2005;57(10):717–729. doi:10.1007/s00251-005-0048-3
  • Guerini FR, Fusco C, Mazzi B, et al. HLA-Cw allele frequencies in northern and southern Italy. Transpl Immunol. 2008;18(3):286–289.
  • Buhler S, Nunes JM, Nicoloso G, et al. The heterogeneous HLA genetic makeup of the Swiss population. PLoS One. 2012;7(7):e41400. doi:10.1371/journal.pone.0041400
  • Tu B, Mack SJ, Lazaro A, et al. HLA-A, -B, -C, -DRB1 allele and haplotype frequencies in an African American population. Tissue Antigens. 2007;69(1):73–85. doi:10.1111/j.1399-0039.2006.00728.x
  • Mack S, Tu B, Lazaro A, et al. HLA-A, -B, -C, and-DRB1 allele and haplotype frequencies distinguish Eastern European Americans from the general European American population. Tissue Antigens. 2008;73(1):17–32. doi:10.1111/j.1399-0039.2008.01151.x