423
Views
7
CrossRef citations to date
0
Altmetric
Review

Research Progress of Olfactory Nerve Regeneration Mechanism and Olfactory Training

, ORCID Icon, , , , & ORCID Icon show all
Pages 185-195 | Published online: 05 Mar 2022

References

  • Vennemann MM, Hummel T, Berger K. The association between smoking and smell and taste impairment in the general population. J Neurol. 2008;255(8):1121–1126. doi:10.1007/s00415-008-0807-9
  • Glezer I, Malnic B. Olfactory receptor function. Handb Clin Neurol. 2019;164:67–78.
  • Yu CR, Wu Y. Regeneration and rewiring of rodent olfactory sensory neurons. Exp Neurol. 2017;287(Pt 3):395–408. doi:10.1016/j.expneurol.2016.06.001
  • Hummel T, Rissom K, Reden J, Hähner A, Weidenbecher M, Hüttenbrink K-B. Effects of olfactory training in patients with olfactory loss. Laryngoscope. 2009;119(3):496–499. doi:10.1002/lary.20101
  • Schwob JE, Jang W, Holbrook EH, et al. Stem and progenitor cells of the mammalian olfactory epithelium: taking poietic license. J Comp Neurol. 2017;525(4):1034–1054. doi:10.1002/cne.24105
  • Schnittke N, Herrick DB, Lin B, et al. Transcription factor p63 controls the reserve status but not the stemness of horizontal basal cells in the olfactory epithelium. Proc Natl Acad Sci U S A. 2015;112(36):E5068–E5077. doi:10.1073/pnas.1512272112
  • Leung CT, Coulombe PA, Reed RR. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci. 2007;10(6):720–726. doi:10.1038/nn1882
  • Jang W, Chen X, Flis D, Harris M, Schwob JE. Label-retaining, quiescent globose basal cells are found in the olfactory epithelium. J Comp Neurol. 2014;522(4):731–749. doi:10.1002/cne.23470
  • Gadye L, Das D, Sanchez MA, et al. Injury activates transient olfactory stem cell states with diverse lineage capacities. Cell Stem Cell. 2017;21(6):775–790 e779. doi:10.1016/j.stem.2017.10.014
  • Chen M, Tian S, Yang X, Lane AP, Reed RR, Liu H. Wnt-responsive Lgr5+ globose basal cells function as multipotent olfactory epithelium progenitor cells. J Neurosci. 2014;34(24):8268–8276. doi:10.1523/JNEUROSCI.0240-14.2014
  • Li X, Tong M, Wang L, Qin Y, Yu H, Yu Y. Age-dependent activation and neuronal differentiation of Lgr5+ basal cells in injured olfactory epithelium via notch signaling pathway. Front Aging Neurosci. 2020;12:602688. doi:10.3389/fnagi.2020.602688
  • Li Z, Wei M, Shen W, Kulaga H, Chen M, Lane AP. Sox2 regulates globose basal cell regeneration in the olfactory epithelium. Int Forum Allergy Rhinol. 2022. doi:10.1002/alr.22890
  • Packard AI, Lin B, Schwob JE. Sox2 and Pax6 play counteracting roles in regulating neurogenesis within the murine olfactory epithelium. PLoS One. 2016;11(5):e0155167. doi:10.1371/journal.pone.0155167
  • Krolewski RC, Packard A, Jang W, Wildner H, Schwob JE. Ascl1 (Mash1) knockout perturbs differentiation of nonneuronal cells in olfactory epithelium. PLoS One. 2012;7(12):e51737. doi:10.1371/journal.pone.0051737
  • Rodriguez-Gil DJ, Bartel DL, Jaspers AW, Mobley AS, Imamura F, Greer CA. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons. Proc Natl Acad Sci U S A. 2015;112(18):5821–5826. doi:10.1073/pnas.1417955112
  • Lin B, Coleman JH, Peterson JN, et al. Injury induces endogenous reprogramming and dedifferentiation of neuronal progenitors to multipotency. Cell Stem Cell. 2017;21(6):761–774 e765. doi:10.1016/j.stem.2017.09.008
  • Iwai N, Zhou Z, Roop DR, Behringer RR. Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells. 2008;26(5):1298–1306. doi:10.1634/stemcells.2007-0891
  • Chen M, Reed RR, Lane AP. Acute inflammation regulates neuroregeneration through the NF-κB pathway in olfactory epithelium. Proc Natl Acad Sci U S A. 2017;114(30):8089–8094. doi:10.1073/pnas.1620664114
  • Chen M, Reed RR, Lane AP. Chronic inflammation directs an olfactory stem cell functional switch from neuroregeneration to immune defense. Cell Stem Cell. 2019;25(4):501–513 e505. doi:10.1016/j.stem.2019.08.011
  • Jia C, Oliver J, Gilmer D, Lovins C, Rodriguez-Gil DJ, Hagg T. Inhibition of focal adhesion kinase increases adult olfactory stem cell self-renewal and neuroregeneration through ciliary neurotrophic factor. Stem Cell Res. 2020;49:102061. doi:10.1016/j.scr.2020.102061
  • Yoh K, Prywes R. Pathway regulation of p63, a director of epithelial cell fate. Front Endocrinol. 2015;6:51. doi:10.3389/fendo.2015.00051
  • Fletcher RB, Prasol MS, Estrada J, et al. p63 regulates olfactory stem cell self-renewal and differentiation. Neuron. 2011;72(5):748–759. doi:10.1016/j.neuron.2011.09.009
  • Fletcher RB, Das D, Gadye L, et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell. 2017;20(6):817–830 e818. doi:10.1016/j.stem.2017.04.003
  • Herrick DB, Lin B, Peterson J, Schnittke N, Schwob JE. Notch1 maintains dormancy of olfactory horizontal basal cells, a reserve neural stem cell. Proc Natl Acad Sci U S A. 2017;114(28):E5589–E5598. doi:10.1073/pnas.1701333114
  • Williams SK, Franklin RJ, Barnett SC. Response of olfactory ensheathing cells to the degeneration and regeneration of the peripheral olfactory system and the involvement of the neuregulins. J Comp Neurol. 2004;470(1):50–62. doi:10.1002/cne.11045
  • Barraud P, Seferiadis AA, Tyson LD, et al. Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci U S A. 2010;107(49):21040–21045. doi:10.1073/pnas.1012248107
  • Ekberg JA, Amaya D, Mackay-Sim A, St John JA. The migration of olfactory ensheathing cells during development and regeneration. Neurosignals. 2012;20(3):147–158. doi:10.1159/000330895
  • Cao L, Su Z, Zhou Q, et al. Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration. Glia. 2006;54(6):536–544. doi:10.1002/glia.20403
  • Windus LCE, Chehrehasa F, Lineburg KE, et al. Stimulation of olfactory ensheathing cell motility enhances olfactory axon growth. Cell Mol Life Sci. 2011;68(19):3233–3247. doi:10.1007/s00018-011-0630-9
  • Vukovic J, Ruitenberg MJ, Roet K, et al. The glycoprotein fibulin-3 regulates morphology and motility of olfactory ensheathing cells in vitro. Glia. 2009;57(4):424–443. doi:10.1002/glia.20771
  • Nazareth L, Lineburg KE, Chuah MI, et al. Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J Comp Neurol. 2015;523(3):479–494. doi:10.1002/cne.23694
  • Su Z, Chen J, Qiu Y, et al. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia. 2013;61(4):490–503. doi:10.1002/glia.22450
  • Li Y, Zou T, Xue L, Yin ZQ, Huo S, Xu H. TGF-beta1 enhances phagocytic removal of neuron debris and neuronal survival by olfactory ensheathing cells via integrin/MFG-E8 signaling pathway. Mol Cell Neurosci. 2017;85:45–56. doi:10.1016/j.mcn.2017.08.006
  • Wei Y, Miao X, Xian M, et al. Effects of transplanting olfactory ensheathing cells on recovery of olfactory epithelium after olfactory nerve transection in rats. Med Sci Monit. 2008;14(10):BR198–BR204.
  • Yue Y, Xue Q, Yang J, et al. Wnt-activated olfactory ensheathing cells stimulate neural stem cell proliferation and neuronal differentiation. Brain Res. 2020;1735:146726. doi:10.1016/j.brainres.2020.146726
  • Bao X, Xu X, Wu Q, et al. Sphingosine 1-phosphate promotes the proliferation of olfactory ensheathing cells through YAP signaling and participates in the formation of olfactory nerve layer. Glia. 2020;68(9):1757–1774. doi:10.1002/glia.23803
  • Sarnat HB, Flores-Sarnat L. Olfactory development, part 2: neuroanatomic maturation and dysgeneses. J Child Neurol. 2017;32(6):579–593. doi:10.1177/0883073816685192
  • Huart C, Rombaux P, Hummel T. Plasticity of the human olfactory system: the olfactory bulb. Molecules. 2013;18(9):11586–11600. doi:10.3390/molecules180911586
  • Kanaki K, Sato K, Kashiwayanagi M. Functional synapse formation between rat olfactory receptor neurons and olfactory bulb neurons in vitro. Neurosci Lett. 2000;285:76–78. doi:10.1016/S0304-3940(00)01028-4
  • Marei HE, Althani A, Afifi N, et al. Over-expression of hNGF in adult human olfactory bulb neural stem cells promotes cell growth and oligodendrocytic differentiation. PLoS One. 2013;8(12):e82206. doi:10.1371/journal.pone.0082206
  • Frontera JL, Cervino AS, Jungblut LD, Paz DA. Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis. Ann Anat. 2015;198:41–48. doi:10.1016/j.aanat.2014.10.010
  • Uranagase A, Katsunuma S, Doi K, Nibu K. BDNF expression in olfactory bulb and epithelium during regeneration of olfactory epithelium. Neurosci Lett. 2012;516(1):45–49. doi:10.1016/j.neulet.2012.03.051
  • Nieto-Estevez V, Defterali C, Vicario C. Distinct effects of BDNF and NT-3 on the dendrites and presynaptic boutons of developing olfactory bulb GABAergic interneurons in vitro. Cell Mol Neurobiol. 2021. doi:10.1007/s10571-020-01030-x
  • Badurek S, Griguoli M, Asif-Malik A, et al. Immature dentate granule cells require Ntrk2/Trkb for the formation of functional hippocampal circuitry. iScience. 2020;23(5):101078. doi:10.1016/j.isci.2020.101078
  • Wang W, Lu S, Li T, et al. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function. J Neurosci. 2015;35(20):7833–7849. doi:10.1523/JNEUROSCI.3745-14.2015
  • Racekova E, Orendacova J. An olfactory bulbectomy model to study plasticity of the nervous system in rat: a review focused on published data from the Slovak Republic. Int J Neurosci. 2007;117(8):1067–1090. doi:10.1080/00207450600912271
  • Weng P-L, Vinjamuri M, Ovitt CE. Ascl3 transcription factor marks a distinct progenitor lineage for non-neuronal support cells in the olfactory epithelium. Sci Rep. 2016;6:38199. doi:10.1038/srep38199
  • Wang Y, Huang ZH. Morphological phenotypes of olfactory ensheathing cells display different migratory responses upon Slit-2. Exp Cell Res. 2012;318(15):1889–1900. doi:10.1016/j.yexcr.2012.05.024
  • Reginensi D, Carulla P, Nocentini S, et al. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cell Mol Life Sci. 2015;72(14):2719–2737. doi:10.1007/s00018-015-1869-3
  • Oleszkiewicz A, Hanf S, Whitcroft KL, Haehner A, Hummel T. Examination of olfactory training effectiveness in relation to its complexity and the cause of olfactory loss. Laryngoscope. 2018;128(7):1518–1522. doi:10.1002/lary.26985
  • Altundag A, Cayonu M, Kayabasoglu G, et al. Modified olfactory training in patients with postinfectious olfactory loss. Laryngoscope. 2015;125(8):1763–1766. doi:10.1002/lary.25245
  • Qiao X-F, Bai Y-H, Wang G-P, Li X, Zheng W. Clinical effects of two combinations of olfactory agents on olfactory dysfunction after upper respiratory tract infection during olfactory training. Rev Assoc Med Bras. 2020;66(1):18–24. doi:10.1590/1806-9282.66.1.18
  • Konstantinidis I, Tsakiropoulou E, Constantinidis J. Long term effects of olfactory training in patients with post-infectious olfactory loss. Rhinology. 2016;54(2):170–175. doi:10.4193/Rhino15.264
  • Geißler K, Reimann H, Gudziol H, Bitter T, Guntinas-Lichius O. Olfactory training for patients with olfactory loss after upper respiratory tract infections. Eur Arch Otorhinolaryngol. 2014;271(6):1557–1562. doi:10.1007/s00405-013-2747-y
  • Poletti SC, Michel E, Hummel T. Olfactory training using heavy and light weight molecule odors. Perception. 2017;46(3–4):343–351. doi:10.1177/0301006616672881
  • Damm M, Pikart LK, Reimann H, et al. Olfactory training is helpful in postinfectious olfactory loss: a randomized, controlled, multicenter study. Laryngoscope. 2014;124(4):826–831. doi:10.1002/lary.24340
  • Oleszkiewicz A, Bottesi L, Pieniak M, et al. Olfactory training with aromastics: olfactory and cognitive effects. Eur Arch Otorhinolaryngol. 2022. doi:10.1007/s00405-021-06810-9
  • Saatci O, Altundag A, Duz OA, Hummel T. Olfactory training ball improves adherence and olfactory outcomes in post-infectious olfactory dysfunction. Eur Arch Otorhinolaryngol. 2020;277(7):2125–2132. doi:10.1007/s00405-020-05939-3
  • Mori E, Petters W, Schriever VA, Valder C, Hummel T. Exposure to odours improves olfactory function in healthy children. Rhinology. 2015;53(3):221–226. doi:10.4193/Rhino14.192
  • Mahmut MK, Pieniak M, Resler K, Schriever VA, Haehner A, Oleszkiewicz A. Olfactory training in 8-year-olds increases odour identification ability: a preliminary study. Eur J Pediatr. 2021;180(7):2049–2053. doi:10.1007/s00431-021-03970-y
  • Lamira JM, Soler ZM, Schlosser RJ. A pilot study of olfactory training in older hyposmic adults. Am J Rhinol Allergy. 2019;33(6):650–656. doi:10.1177/1945892419858793
  • Birte-Antina W, Ilona C, Antje H, Thomas H. Olfactory training with older people. Int J Geriatr Psychiatry. 2018;33(1):212–220. doi:10.1002/gps.4725
  • Konstantinidis I, Tsakiropoulou E, Bekiaridou P, Kazantzidou C, Constantinidis J. Use of olfactory training in post-traumatic and postinfectious olfactory dysfunction. Laryngoscope. 2013;123(12):E85–90. doi:10.1002/lary.24390
  • Kattar N, Do TM, Unis GD, Migneron MR, Thomas AJ, McCoul ED. Olfactory training for postviral olfactory dysfunction: systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2021;164(2):244–254. doi:10.1177/0194599820943550
  • Choi BY, Jeong H, Noh H, Park JY, Cho JH, Kim JK. Effects of olfactory training in patients with postinfectious olfactory dysfunction. Clin Exp Otorhinolaryngol. 2021;14(1):88–92. doi:10.21053/ceo.2020.00143
  • Huang T, Wei Y, Wu D. Effects of olfactory training on posttraumatic olfactory dysfunction: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2021;11(7):1102–1112. doi:10.1002/alr.22758
  • Jiang R-S, Twu C-W, Liang K-L. The effect of olfactory training on odor identification in patients with traumatic anosmia. Int Forum Allergy Rhinol. 2019;9(11):1244–1251. doi:10.1002/alr.22409
  • Haehner A, Tosch C, Wolz M, et al. Olfactory training in patients with Parkinson’s disease. PLoS One. 2013;8(4):e61680. doi:10.1371/journal.pone.0061680
  • Hummel T, Stupka G, Haehner A, Poletti SC. Olfactory training changes electrophysiological responses at the level of the olfactory epithelium. Rhinology. 2018;56(4):330–335. doi:10.4193/Rhin17.163
  • Kim BY, Park JY, Kim EJ, Kim BG, Kim SW, Kim SW. The neuroplastic effect of olfactory training to the recovery of olfactory system in mouse model. Int Forum Allergy Rhinol. 2019;9(7):715–723. doi:10.1002/alr.22320
  • Franceschini IA, Barnett SC. Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Dev Biol. 1996;173(1):327–343. doi:10.1006/dbio.1996.0027
  • Barnett SC, Riddell JS. Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat. 2004;204(1):57–67. doi:10.1111/j.1469-7580.2004.00257.x
  • Kim BY, Park J, Kim E, Kim B. Olfactory ensheathing cells mediate neuroplastic mechanisms after olfactory training in mouse model. Am J Rhinol Allergy. 2020;34(2):217–229. doi:10.1177/1945892419885036
  • Marin C, Laxe S, Langdon C, et al. Olfactory training prevents olfactory dysfunction induced by bulbar excitotoxic lesions: role of neurogenesis and dopaminergic interneurons. Mol Neurobiol. 2019;56(12):8063–8075. doi:10.1007/s12035-019-1639-6
  • Hasegawa-Ishii S, Imamura F, Nagayama S, Murata M, Shimada A. Differential effects of nasal inflammation and odor deprivation on layer-specific degeneration of the mouse olfactory bulb. eNeuro. 2020;7(2):ENEURO.0403-19.2020. doi:10.1523/ENEURO.0403-19.2020
  • Veyseller B, Ozucer B, Aksoy F, et al. Reduced olfactory bulb volume and diminished olfactory function in total laryngectomy patients: a prospective longitudinal study. Am J Rhinol Allergy. 2012;26(3):191–193. doi:10.2500/ajra.2012.26.3768
  • Gürbüz D, Kesimli MC, Bilgili AM, Durmaz HÖ. Olfactory rehabilitation and olfactory bulb volume changes in patients after total laryngectomy: a prospective randomized study. Braz J Otorhinolaryngol. 2021. doi:10.1016/j.bjorl.2021.02.013
  • Negoias S, Pietsch K, Hummel T. Changes in olfactory bulb volume following lateralized olfactory training. Brain Imaging Behav. 2017;11(4):998–1005. doi:10.1007/s11682-016-9567-9
  • Pellegrino R, Han P, Reither N, Hummel T. Effectiveness of olfactory training on different severities of posttraumatic loss of smell. Laryngoscope. 2019;129(8):1737–1743. doi:10.1002/lary.27832
  • Hosseini K, Zare-Sadeghi A, Sadigh-Eteghad S, Mirsalehi M, Khezerloo D. Effects of olfactory training on resting‑state effective connectivity in patients with posttraumatic olfactory dysfunction. Acta Neurobiol Exp. 2020;80(4):381–388. doi:10.21307/ane-2020-035
  • Rezaeyan A, Asadi S, Kamrava SK, Khoei S, Zare-Sadeghi A. Reorganizing brain structure through olfactory training in post-traumatic smell impairment: an MRI study. J Neuroradiol. 2021. doi:10.1016/j.neurad.2021.04.035
  • Han P, Musch M, Abolmaali N, Hummel T. Improved odor identification ability and increased regional gray matter volume after olfactory training in patients with idiopathic olfactory loss. I-Perception. 2021;12(2):20416695211005811. doi:10.1177/20416695211005811
  • Al Ain S, Poupon D, Hetu S, Mercier N, Steffener J, Frasnelli J. Smell training improves olfactory function and alters brain structure. Neuroimage. 2019;189:45–54. doi:10.1016/j.neuroimage.2019.01.008
  • Gellrich J, Han P, Manesse C, et al. Brain volume changes in hyposmic patients before and after olfactory training. Laryngoscope. 2018;128(7):1531–1536. doi:10.1002/lary.27045
  • Kollndorfer K, Fischmeister FP, Kowalczyk K, et al. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. Neuroimage Clin. 2015;9:401–410. doi:10.1016/j.nicl.2015.09.004
  • Kollndorfer K, Kowalczyk K, Hoche E, et al. Recovery of olfactory function induces neuroplasticity effects in patients with smell loss. Neural Plast. 2014;2014:140419. doi:10.1155/2014/140419
  • Jiramongkolchai P, Jones MS, Peterson A, et al. Association of olfactory training with neural connectivity in adults with postviral olfactory dysfunction. JAMA Otolaryngol Head Neck Surg. 2021;147(6):502–509. doi:10.1001/jamaoto.2021.0086