248
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effect of Tricalcium Phosphate on Healing of Non-Unions: An Observational Study of over 400 Non-Unions

, , , , , , , ORCID Icon & show all
Pages 395-404 | Received 02 Mar 2023, Accepted 24 Apr 2023, Published online: 12 May 2023

References

  • Schmidmaier G, Moghaddam A. [Long Bone Nonunion]. Z Orthopadie Unfallchirurgie. 2015;153(6):659–756. doi:10.1055/s-0035-1558259
  • Rupp M, Klute L, Baertl S, et al. The clinical use of bone graft substitutes in orthopedic surgery in Germany-A 10-years survey from 2008 to 2018 of 1,090,167 surgical interventions. J Biomed Mater Res B Appl Biomater. 2021. doi:10.1002/jbm.b.34911
  • Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6. doi:10.1016/s0020-1383(08)70003-2
  • Miska M, Schmidmaier G. Diamond-Konzept zur Behandlung von Pseudarthrosen und Knochendefekten [Diamond concept for treatment of nonunions and bone defects]. Unfallchirurg. 2020;123(9):679–686. German. doi:10.1007/s00113-020-00843-1
  • Andrzejowski P, Masquelet A, Giannoudis PV. Induced membrane technique (Masquelet) for bone defects in the distal tibia, foot, and ankle: systematic review, case presentations, tips, and techniques. Foot Ankle Clin. 2020;25(4):537–586. doi:10.1016/j.fcl.2020.08.013
  • Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction des os longs par membrane induite et autogreffe spongieuse [Reconstruction of the long bones by the induced membrane and spongy autograft]. Ann Chir Plast Esthet. 2000;45(3):346–353. French.
  • Krappinger D, Lindtner RA, Zegg M, Dal Pont A, Huber B. Die Masquelet-Technik zur Behandlung grosser dia- und metaphysarer Knochendefekte [Masquelet technique for the treatment of large dia- and metaphyseal bone defects]. Oper Orthop Traumatol. 2015;27(4):357–368. German. doi:10.1007/s00064-014-0300-9
  • Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L. Risk factors contributing to fracture non-unions. Injury. 2007;38(Suppl 2):S11–8. doi:10.1016/s0020-1383(07)80004-0
  • Hak DJ, Fitzpatrick D, Bishop JA, et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury. 2014;45(Suppl 2):S3–7. doi:10.1016/j.injury.2014.04.002
  • Tanner MC, Heller RA, Grimm A, et al. The influence of an occult infection on the outcome of autologous bone grafting during surgical bone reconstruction: a large single-center case-control study. J Inflamm Res. 2021;14:995–1005. doi:10.2147/JIR.S297329
  • Calori GM, Mazza E, Colombo M, Ripamonti C. The use of bone-graft substitutes in large bone defects: any specific needs? Injury. 2011;42(Suppl 2):S56–63. doi:10.1016/j.injury.2011.06.011
  • Giannoudis PV, Tzioupis C, Green J. Surgical techniques: how I do it? The Reamer/Irrigator/Aspirator (RIA) system. Injury. 2009;40(11):1231–1236. doi:10.1016/j.injury.2009.07.070
  • Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma. 2019;33(4):203–213. doi:10.1097/BOT.0000000000001420
  • Ferguson J, Diefenbeck M, McNally M. Ceramic Biocomposites as biodegradable antibiotic carriers in the treatment of bone infections. J Bone Jt Infect. 2017;2(1):38–51. doi:10.7150/jbji.17234
  • Hettwer W. Synthetischer Knochenersatz : Aktuelle Entwicklungen und Perspektiven [Synthetic bone replacement: current developments and perspectives]. Orthopade. 2017;46(8):688–700. German. doi:10.1007/s00132-017-3447-x
  • Horowitz AR, Mazot Z, Foitzik C, Prasad H, Rohrer M, Palti A. β-tricalcium phosphate as bone substitute material: properties and clinical applications. J Osseointegration. 2010;1:35.
  • Tadic D. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25(6):987–994. doi:10.1016/s0142-9612(03)00621-5
  • Epstein NE. Beta tricalcium phosphate: observation of use in 100 posterolateral lumbar instrumented fusions. Spine J. 2009;9(8):630–638. doi:10.1016/j.spinee.2009.04.007
  • Thaler M, Lechner R, Gstottner M, Kobel C, Bach C. The use of beta-tricalcium phosphate and bone marrow aspirate as a bone graft substitute in posterior lumbar interbody fusion. Eur Spine J. 2013;22(5):1173–1182. doi:10.1007/s00586-012-2541-3
  • Anker CJ, Holdridge SP, Baird B, Cohen H, Damron TA. Ultraporous beta-tricalcium phosphate is well incorporated in small cavitary defects. Clin Orthop Relat Res. 2005;2(434):251–257. doi:10.1097/01.blo.0000153991.94765.1b
  • van Hemert WL, Willems K, Anderson PG, van Heerwaarden RJ, Wymenga AB. Tricalcium phosphate granules or rigid wedge preforms in open wedge high tibial osteotomy: a radiological study with a new evaluation system. Knee. 2004;11(6):451–456. doi:10.1016/j.knee.2004.08.004
  • DiGiovanni CW, Lin SS, Baumhauer JF, et al. Recombinant human platelet-derived growth factor-BB and beta-tricalcium phosphate (rhPDGF-BB/beta-TCP): an alternative to autogenous bone graft. J Bone Joint Surg Am. 2013;95(13):1184–1192. doi:10.2106/JBJS.K.01422
  • Sasaki G, Watanabe Y, Yasui Y, et al. Clinical and radiological assessment of the induced membrane technique using beta-tricalcium phosphate in reconstructive surgery for lower extremity long bone defects. Bone Joint J. 2021;103-B(3):456–461. doi:10.1302/0301-620X.103B3.BJJ-2020-1542.R1
  • Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am. 1987;18(2):213–225.
  • Helbig L, Werner M, Schneider S, Simank HG. Die mediale Schenkelhalsfraktur Typ I nach Garden: konservative vs. operative Therapie. Ergebnisse einer retrospektiven Studie [Garden I femoral neck fractures: conservative vs operative therapy]. Orthopade. 2005;34(10):1040–1045. German. doi:10.1007/s00132-005-0855-0
  • Keats AS. The ASA classification of physical status - a recapitulation. Anesthesiology. 1978;49:233–235. doi:10.1097/00000542-197810000-00001
  • Cohen J. Statistical Power Analysis. Curr Dir Psychol Sci. 1992;1(3):98–101. doi:10.1111/1467-8721.ep10768783
  • Flierl MA, Smith WR, Mauffrey C, et al. Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients. J Orthop Surg Res. 2013;8:33. doi:10.1186/1749-799X-8-33
  • Moghaddam A, Thaler B, Bruckner T, Tanner M, Schmidmaier G. Treatment of atrophic femoral non-unions according to the diamond concept: results of one- and two-step surgical procedure. J Orthop. 2017;14(1):123–133. doi:10.1016/j.jor.2016.10.003
  • Helbig L, Bechberger M, Aldeeri R, et al. Initial peri- and postoperative antibiotic treatment of infected nonunions: results from 212 consecutive patients after mean follow-up of 34 months. Ther Clin Risk Manag. 2018;14:59–67. doi:10.2147/TCRM.S152008
  • Dapunt U, Spranger O, Gantz S, et al. Are atrophic long-bone nonunions associated with low-grade infections? Ther Clin Risk Manag. 2015;11:1843–1852. doi:10.2147/TCRM.S91532
  • Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107–118. doi:10.1177/154405910808700215
  • Mills L, Tsang J, Hopper G, Keenan G, Simpson AH. The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Joint Res. 2016;5(10):512–519. doi:10.1302/2046-3758.510.BJR-2016-0138
  • Bender D, Haubruck P, Boxriker S, Korff S, Schmidmaier G, Moghaddam A. Validity of subjective smoking status in orthopedic patients. Ther Clin Risk Manag. 2015;11:1297–1303. doi:10.2147/TCRM.S86212
  • Serbest S, Tiftikci U, Tosun HB, Gumustas SA, Uludag A. Is there a relationship between fracture healing and mean platelet volume? Ther Clin Risk Manag. 2016;12:1095–1099. doi:10.2147/TCRM.S108790
  • Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37(Suppl 2):S105–12. doi:10.1016/j.injury.2006.04.016
  • Gustilo RB, Anderson JT. JSBS classics. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones. Retrospective and prospective analyses. J Bone Joint Surgery Am. 2002;84-A(4):682.
  • Kurien T, Pearson RG, Scammell BE. Bone graft substitutes currently available in orthopaedic practice. Bone Joint J. 2013;95-B(5):583–597. doi:10.1302/0301-620X.95B5
  • Campana V, Milano G, Pagano E, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–2461. doi:10.1007/s10856-014-5240-2
  • Gomez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone. 2015;70:93–101. doi:10.1016/j.bone.2014.07.033
  • Buser Z, Brodke DS, Youssef JA, et al. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine. 2016;25(4):509–516. doi:10.3171/2016.1.SPINE151005
  • Davies JE, Matta R, Mendes VC, Perri de Carvalho PS. Development, characterization and clinical use of a biodegradable composite scaffold for bone engineering in oro-maxillo-facial surgery. Organogenesis. 2010;6(3):161–166. doi:10.4161/org.6.3.12392
  • Papageorgiou SN, Papageorgiou PN, Deschner J, Gotz W. Comparative effectiveness of natural and synthetic bone grafts in oral and maxillofacial surgery prior to insertion of dental implants: systematic review and network meta-analysis of parallel and cluster randomized controlled trials. J Dent. 2016;48:1–8. doi:10.1016/j.jdent.2016.03.010
  • Garcia DC, Mingrone LE, de Sa MJC. Evaluation of osseointegration and bone healing using pure-phase beta - TCP ceramic implant in bone critical defects. A systematic review. Front Vet Sci. 2022;9:859920. doi:10.3389/fvets.2022.859920
  • Liu CC, Solderer A, Heumann C, Attin T, Schmidlin PR. Tricalcium phosphate (-containing) biomaterials in the treatment of periodontal infra-bony defects: a systematic review and meta-analysis. J Dent. 2021;114:103812. doi:10.1016/j.jdent.2021.103812