17
Views
1
CrossRef citations to date
0
Altmetric
Review

Mycophenolic acid agents: is enteric coating the answer?

, &
Pages 45-53 | Published online: 29 Mar 2011

References

  • Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 2000;342(9):605–612.
  • Pascual M, Theruvath T, Kawai T, Tolkoff-Rubin N, Cosimi AB. Strategies to improve long-term outcomes after renal transplantation. N Engl J Med. 2002;346(8):580–590.
  • Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant. 2004;4(3):378–383.
  • European Mycophenolate Mofetil Cooperative Study Group. Placebocontrolled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet. 1995; 345(8961):1321–1325.
  • Sollinger HW. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. US Renal Transplant Myco-phenolate Mofetil Study Group. Transplantation. 1995;60(3):225–232.
  • Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation. 1996;61(7):1029–1037.
  • Ojo AO, Meier-Kriesche HU, Hanson JA, et al. Mycophenolate mofetil reduces late renal allograft loss independent of acute rejection. Transplantation. 2000:69(11):2405–2409.
  • Halloran P, Mathew T, Tomlanovich S, et al. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation. 1997;63(1):39–47.
  • Meier-Kriesche HU, Steffen BJ, Hochberg AM, et al. Long-term use of mycophenolate mofetil is associated with a reduction in the incidence and risk of late rejection. Am J Transplant. 2003;3(1):68–73.
  • Lee WA, Gu L, Miksztal AR, et al. Bioavailability improvement of mycophenolic acid through amino ester derivation. Pharm Res. 1990; 7(2):161–166.
  • Genentech Incorporated. Cellcept®: prescribing information. http://www.gene.com/gene/products/information/cellcept/pdf/pi.pdf. Accessed January 15, 2011.
  • Arns W, Breuer S, Choudhury S, et al. Enteric-coated mycopheno-late sodium delivers bioequivalent MPA exposure compared with mycophenolate mofetil. Clin Transplant. 2005;19(2):199–206.
  • Novartis Pharmaceuticals Corporation. Myfortic®: prescribing information. http://www.pharma.us.novartis.com/product/pi/pdf/myfortic.pdf. Accessed January 15, 2011.
  • Budde K, Bauer S, Hambach P, et al. Pharmacokinetic and pharmacodynamic comparison of enteric-coated mycophenolate sodium and mycophenolate mofetil in maintenance renal transplant patients. Am J Transplant. 2007;7(4):888–898.
  • Tedesco-Silva H, Bastien MC, ChoiL. Mycophenolic acid metabolite profile in renal transplant patients receiving enteric-coated mycophe-nolate sodium or mycophenolate mofetil. Transplant Proc. 2005;37(2): 852–855.
  • Nowak I, Shaw LM. Mycophenolic acid binding to human serum albumin: characterization and relation to pharmacodynamics. Clin Chem. 1995;41(7):1011–1017.
  • Schutz E, Shipkova M, Armstrong VW, et al. Identification of a pharmacologically active metabolite of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Clin Chem. 1999;45(3):419–422.
  • Shipkova M, Armstrong VW, Wieland E, et al. Identification of gluco-side and carboxyl-linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Br J Pharmacol. 1999;126(5):1075–1082.
  • Shipkova M, Wieland E, Schutz E, et al. The acyl glucuronide metabolite of mycophenolic acid inhibits the proliferation of human mononuclear leukocytes. Transplant Proc. 2001;33(1–2):1080–1081.
  • Bullingham RE, Nicholls A, Hale M. Pharmacokinetics of mycophenolate mofetil (RS61443): a short review. Transplant Proc. 1996;28(2):925–929.
  • Johnson HJ, Swan SK, Heim-Duthoy KL, et al. The pharmacokinetics of a single oral dose of mycophenolate mofetil in patients with varying degrees of renal function. Clin Pharmacol Ther. 1998;63(5):512–518.
  • Shaw LM, Mick R, Nowak I, et al. Pharmacokinetics of mycophenolic acid in renal transplant patients with delayed graft function. J Clin Pharmacol. 1998;38(3):268–275.
  • Hesselink DA, van Hest RM, Mathot RAA, et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant. 2005;5(5):987–994.
  • Van Gelder T, Klupp J, Barten MJ, et al. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit. 2001;23(2):119–128.
  • Naesens M, Kuypers DR, Verbeke K, Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation. 2006;82(8): 1074–1084.
  • Zucker K, Rosen A, Tsaroucha A, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol. 1997;5(3):225–232.
  • Kobayashi M, Saitoh H, Tadano K, et al. Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance associated protein 2 in rats. J Pharmacol Exp Ther. 2004;309(3):1029–1035.
  • Westley IS, Brogan LR, Morris RC, et al. Role of MRP2 in the hepatic disposition of mycophenolic acid: effect of cyclosporine. Drug Metab Dispos. 2006;34(2):261–266.
  • Naderer OJ, Dupuis RE, Heinzen EL, et al. The influence of norfloxacin and metronidazole on the disposition of mycophenolate mofetil. J Clin Pharmacol. 2005;45(2):219–226.
  • Zucker K, Tsaroucha A, Olson L, et al. Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther Drug Monit. 1999;21(1):35–43.
  • Kagaya H, Miura M, Satoh S, et al. No pharmacokinetic interactions between mycophenolic acid and tacrolimus in renal transplant recipients. J Clin Pharm Ther. 2008;33(2):193–201.
  • Knight SR, Morris P. Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systemic review. Transplantation. 2008;85(12):1675–1685.
  • Webber LT, Shipkova M, Armstrong VW, et al. Comparison of the Emit immunoassay with HPLC for therapeutic drug monitoring of mycophenolic acid in pediatric renal transplant recipients on mycophenolate mofetil therapy. Clin Chem. 2002;48(3):517–525.
  • Van Gelder T, Hilbrands LB, Vanrenterghem Y, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation. 1999; 68(2):261–266.
  • Le Meur Y, Büchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant. 2007;7(11): 2496–2503.
  • Van Gelder T, Silva HT, de Fijter JW, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation. 2008;27;86(8): 1043–1051.
  • Van Gelder T. Mycophenolate blood level monitoring: recent progress. Am J Transplant. 2009;9(7):1495–1499.
  • Atcheson BA, Taylor PJ, Kirk Patrick CM, et al. Free mycophenolic acid should be monitored in renal transplant recipients with hypoalbuminemia. Ther Drug Monit. 2004;26(3):284–286.
  • Atcheson BA, Taylor PJ, Mudge DW, et al. Mycophenolic acid pharmacokinetics and related outcomes early after renal transplant. Br J CHn Pharmacol. 2005;59(3):271–280.
  • Weber LT, Schutz E, Lamersdorf T, et al. Therapeutic drug monitoring of total and free mycophenolic acid (MPA) and limited sampling strategy for determination of MPA-AUC in pediatric renal transplant recipients. The German Study Group on Mycophenolate Mofetil (MMF) Therapy. Nephrol Dial Transplant. 1999;14(Suppl 4):34–35.
  • Cattaneo D, Gaspari F, Ferrari S, et al. Pharmacokinetics helps optimizing mycophenolate mofetil dosing in kidney transplant patients. Clin Transplant. 2001;15(6):402–409.
  • Van Gelder T, Le Meur Y, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit. 2006; 28(2):145–154.
  • Barraclough KA, Staatz CE, Isbel NM, et al. Therapeutic monitoring of mycophenolate in transplantation: is it justified? Curr Drug Metab. 2009;10(2):179–187.
  • Barraclough KA, Isbel NM, Franklin ME, et al. Evaluation of limited sampling strategies for mycophenolic acid after mycophenolate mofetil intake in adult kidney transplant recipients. Ther Drug Monit. 2010;32(6):723–733.
  • Barraclough KA, Isbel NM, Staatz CE. Evaluation of the mycophenolic acid exposure estimation methods used in the APOMYGERE, FDCC, and Opticept trials. Transplantation. 2010;15;90(1):44–51.
  • Weber LT, Shipkova M, Armstrong VW, et al. The pharmacokineticp-harmacodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German study group on mycophenolate mofetil therapy. J Am Soc Nephrol. 2002;13(3): 759–768.
  • Kiberd BA, Lawen J, Fraser AD, et al. Early adequate mycophenolic acid exposure is associated with less rejection in kidney transplantation. Am J Transplant. 2004;4(7):1079–1083.
  • Kuypers DR, Claes K, Evenepoel P, et al. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin Pharmacol Ther. 2004;75(5):434–447.
  • Gaston RS, Kaplan B, Shah T, et al. Fixed- or controlled-dose myco- phenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the opticept trial. Am J Transplant. 2009;9(7):1607–1619.
  • Pawinski T, Durlik M, Szlaska I, et al. Comparison of mycophenolic acid pharmacokinetic parameters in kidney transplant patients within the first 3 months post-transplant. J Clin Pharm Ther. 2006; 31(1):27–34.
  • Lu YP, Lin B, Liang MZ, et al. Correlation of mycophenolic acid pharmacokinetic parameters with side effects in Chinese kidney transplant recipients treated with mycophenolate mofetil. Transplantation Proc. 2004;36(7):2079–2081.
  • Borrows R, Chusney G, Loucaidou M, et al. Mycophenolic acid 12-h trough level monitoring in renal transplantation: Association with acute rejection and toxicity. Am J Transplant. 2006;6(1):121–128.
  • Okamoto M, Wakabayashi Y, Higuchi A, et al. Therapeutic drug monitoring of mycophenolic acid in renal transplant recipients. Transplant Proc. 2005;37(2):859–860.
  • Kuypers DR, Vanrenterghem Y, Squifflet JP, et al. Twelve-month evaluation of the clinical pharmacokinetics of total and free mycophenolic acid and its glucuronide metabolites in renal allograft recipients on low dose tacrolimus in combination with mycophenolate mofetil. Ther Drug Monitor. 2003;25(5):609–622.
  • Kuypers DR, Claes K, Evenepoel P, et al. Long-term changes in mycophenolic acid exposure in combination with tacrolimus and corticosteroids are dose dependent and not reflected by trough plasma concentration: a prospective study in 100 de novo renal allograft recipients. J Clin Pharmacol. 2003;43(8):866–880.
  • Pillans PI, Rigby RJ, Kubler P, et al. A retrospective analysis of mycophenolic acid and cyclosporin concentrations with acute rejection in renal transplant recipients. Clin Biochem. 2001;34(1):77–81.
  • Barbari A, Stephan A, Masri MA, et al. Mycophenolic acid plasma trough level: correlation with clinical outcome. Exp Clin Transplant. 2005;3(2):355–360.
  • De Winter BC, van Gelder T, Mathot RA, et al. Limited sampling strategies drawn within 3 hours postdose poorly predict mycophenolic acid area-under-the-curve after enteric-coated mycophenolate sodium. Ther Drug Monit. 2009;31(5):585–591.
  • Sommerer C, Müller-Krebs S, Schaier M, et al. Pharmacokinetic and pharmacodynamic analysis of enteric-coated mycophenolate sodium: limited sampling strategies and clinical outcome in renal transplant patients. Br J Clin Pharmacol. 2010;69(4):346–357.
  • Salvadori M, Holzer H, de Mattos A, et al; the ERLB301 Study Group. Enteric-coated mycophenolate sodium is therapeutically equivalent to mycophenolate mofetil in de novo renal transplant patients. Am J Transplant. 2004;4(2):231–236.
  • Legendre C, Cohen D, Zeier M, Rostaing L, Budde K. Efficacy and safety of enteric-coated mycophenolate sodium in de novo renal transplant recipients: pooled data from three 12-month multicenter, open-label, prospective studies. Transplant Proc. 2007;39(5):1386–1391.
  • Sollinger HW, Sundberg AK, Leverson G, et al. Mycohenolate mofetil versus enteric-coated mycophenolate sodium: a large, single-center comparison of dose adjustments and outcomes in kidney transplant recipients. Transplantation. 2010;89(4):446–451.
  • Salvadori M, Bertoni E, Budde K, et al. Superior efficacy of entericcated mycophenolate vs mycophenolate mofetil in de novo transplant recipients: pooled analysis. Transplant Proc. 2010;42(4):1325–1328.
  • Cooper M, Deering KL, Slakey DP, et al. Comparing outcomes associated with dose manipulations of enteric-coated mycophenolate sodium versus mycophenolate mofetil in renal transplant recipients. Transplantation. 2009;88(4):514–520.
  • Budde K, Curtis J, Knoll G, et al; on behalf of the ERL B302 Study Group. Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: Results of a 1-year study. Am J Transplant. 2003;4(2):237–243.
  • Budde K, Knoll G, Curtis J, et al. Safety and efficacy after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium: results of a 1-year extension study. Transplant Proc. 2005;37(2): 912–915.
  • Pietruck F, Abbud-Filho M, Vathsala A, Massari PU, Po-Huang L, Nashan B. Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in stable maintenance renal transplant patients: pooled results from three international, multicenter studies. Transplant Proc. 2007;39(1):103–108.
  • Knoll GA, MacDonald I, Khan A, Van Walraven C. Mycophenolate mofetil dose reduction and the risk of acute rejection after renal transplantation. J Am Soc Nephrol. 2003;14(9):2381–2386.
  • Pelletier RP, Akin B, Henry ML, Elkhammas EA, Rajab A, Ferguson RM. The impact of mycophenolate mofetil dosing patterns on clinical outcome after renal transplantation. Clin Transplant. 2003; 17(3):200–205.
  • Tierce JC, Porterfield-Baxa J, Petrilla AA, et al. Impact of mycophe-nolate mofetil (MMF)-related gastrointestinal complications and MMF dose alterations on transplant outcomes and healthcare costs in renal recipients. Clin Transplant. 2005;19(6):779–784.
  • Bunnapradist S, Lentine KL, Burroughs TE, et al. Mycophenolate mofetil dose reduction and discontinuations after gastrointestinal complications are associated with renal transplant graft failure. Transplantation. 2006;82(1):102–107.
  • Chan L, Mulgaonkar S, Walker R, Arns W, Ambühl P, Schiavelli R. Patient-reported gastrointestinal symptom burden and health-related quality of life following conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium. Transplantation. 2006;81(9): 1290–1297.
  • Bolin P, Tanriover B, Zibari GB, et al. Improvement in 3-month patient-reported gastrointestinal symptoms after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in renal transplant patients. Transplantation. 2007;84(11):1443–1451.
  • Shehata M, Bhandari S, Venkat-Raman G, et al. Effect of conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium on maximum tolerated dose and gastrointestinal symptoms following kidney transplantation. Transpl Int. 2009;22(8):821–830.