27
Views
0
CrossRef citations to date
0
Altmetric
Review

Mapping protein–RNA interactions

, , &
Pages 29-41 | Published online: 02 May 2012

References

  • Liu S, Ghalei H, Luhrmann R, Wahl MC. Structural basis for the dual U4 and U4atac snRNA-binding specificity of spliceosomal protein hPrp31. RNA. 2011;17(9):1655–1663.
  • Leung AK, Nagai K, Li J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature. 2011;473(7348):536–539.
  • Schuwirth BS, Borovinskaya MA, Hau CW, et al. Structures of the bacterial ribosome at 3.5 A resolution. Science. 2005;310(5749):827–834.
  • Fisher AJ, Johnson JE. Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature. 1993;361(6408):176–179.
  • Wery JP, Reddy VS, Hosur MV, Johnson JE. The refined threedimensional structure of an insect virus at 2.8 A resolution. J Mol Biol. 1994;235(2):565–586.
  • Scherrer T, Mittal N, Janga SC, Gerber AP. A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PloS One. 2010;5(ll):el5499.
  • Tsvetanova NG, Klass DM, Salzman J, Brown PO. Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PloS One. 20l0;5(9):el267l.
  • Hwang J, Huang L, Cordek DG, et al. Hepatitis C virus nonstructural protein 5A: biochemical characterization of a novel structural class of RNA-binding proteins. J Virol. 20l0;84(24): 12480–12491.
  • Ranjith-Kumar CT, Duffy KE, Jordan JL, et al. Single-stranded oligonucleotides can inhibit cytokine production induced by human toll-like receptor 3. Mol Cell Biol. 2008;28(14):4507–4519.
  • Ranjith-Kumar CT, Murali A, Dong W, et al. Agonist and antagonist recognition by RIG-I, a cytoplasmic innate immunity receptor. J Biol Chem. 2009;284(2):1155–1165.
  • Yi G, Vaughan RC, Yarbrough I, Dharmaiah S, Kao CC. RNA binding by the brome mosaic virus capsid protein and the regulation of viral RNA accumulation. J Mol Biol. 2009;391(2):314–326.
  • Kim YC, Russell WK, Ranjith-Kumar CT, Thomson M, Russell DH, Kao CC. Functional analysis of RNA binding by the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem. 2005;280(45):38011–38019.
  • Ascano M, Hafner M, Cekan P, Gerstberger S, Tuschl T. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip Rev RNA. 2012;3(2):159–177.
  • Hafner M, Landthaler M, Burger L, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP Cell. 2010;141(1):129–141.
  • Hafner M, Landthaler M, Burger L, et al. PAR-CliP - a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp. 2010;41:2034.
  • Orlando V Strutt H, Paro R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods. 1997;11(2):205–214.
  • Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA. Reversible cross-linking combined with immunoprecipitation to study RNA- protein interactions in vivo. Methods. 2002;26(2):182–190.
  • Collas P. The current state of chromatin immunoprecipitation. Mol Biotechnol. 2010;45(1):87–100.
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551–3567.
  • Clauser KR, Baker P, Burlingame AL. Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem. 1999;71(14):2871–2882.
  • Poenisch M, Bartenschlager R. New insights into structure and replication of the hepatitis C virus and clinical implications. Semin Liver Dis. 2010;30(4):333–347.
  • Chinnaswamy S, Cai H, Kao C. An update on small molecule inhibitors of the HCV NS5B polymerase: effects on RNA synthesis in vitro and in cultured cells, and potential resistance in viral quasispecies. Virus Adaptation and Treatment. 2010;2(1):73–89.
  • Chinnaswamy S, Murali A, Li P, Fujisaki K, Kao CC. Regulation of de novo-initiated RNA synthesis in hepatitis C virus RNA- dependent RNA polymerase by intermolecular interactions. J Virol. 2010;84(12):5923–5935.
  • Chinnaswamy S, Yarbrough I, Palaninathan S, et al. A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase. J Biol Chem. 2008;283(29):20535–20546.
  • O’Farrell D, Trowbridge R, Rowlands D, Jager J. Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation. J Mol Biol. 2003;326(4):1025–1035.
  • Lee JH, Nam IY, Myung H. Nonstructural protein 5B of hepatitis C virus. Mol Cells. 2006;21(3):330–336.
  • Kao CC, Yang X, Kline A, Wang QM, Barket D, Heinz BA. Template requirements for RNA synthesis by a recombinant hepatitis C virus RNA- dependent RNA polymerase. JVirol. 2000;74(23):11121–11128.
  • Lan KH, Sheu ML, Hwang SJ, et al. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene. 2002;21(31):4801–4811.
  • Wang J, Tong W, Zhang X, et al. Hepatitis C virus non-structural protein NS5A interacts with FKBP38 and inhibits apoptosis in Huh7 hepatoma cells. FEBSLett. 2006;580(18):4392–4400.
  • Shirota Y, Luo H, Qin W, et al. Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. J Biol Chem. 2002;277(13):11149–11155.
  • Ahn J, Chung KS, Kim DU, et al. Systematic identification of hepatocellular proteins interacting with NS5A of the hepatitis C virus. JBiochem Mol Biol. 2004;37(6):741–748.
  • Fridell RA, Wang C, Sun JH, et al. Genotypic and phenotypic analysis of variants resistant to hepatitis C virus nonstructural protein 5A replication complex inhibitor BMS-790052 in humans: in vitro and in vivo correlations. Hepatology. 2011;54(6):1924–1935.
  • Tellinghuisen TL, Marcotrigiano J, Rice CM. Structure of the zinc- binding domain of an essential component of the hepatitis C virus replicase. Nature. 2005;435(7040):374–379.
  • Li X, Romero P, Rani M, Dunker AK, Obradovic Z. Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform. 1999;10:30–40.
  • Frick DN, Rypma RS, Lam AM, Gu B. The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently. J Biol Chem. 2004;279(2):1269–1280.
  • Gu B, Pruss CM, Gates AT, Khandekar SS. The RNA-unwinding activity of hepatitis C virus non-structural protein 3 (NS3) is positively modulated by its protease domain. Protein Pept Lett. 2005;12(4):315–321.
  • Zhang C, Cai Z, Kim YC, et al. Stimulation of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase activity by the NS3 protease domain and by HCV RNA-dependent RNA polymerase. J Virol. 2005;79(14):8687–8697.
  • Hwang J, Fauzi H, Fukuda K, et al. The RNA aptamer-binding site of hepatitis C virus NS3 protease. Biochem Biophys Res Commun. 2000;279(2):557–562.
  • Kim JL, Morgenstern KA, Griffith JP, et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure. 1998;6(1):89–100.
  • Appleby TC, Anderson R, Fedorova O, et al. Visualizing ATP-dependent RNA translocation by the NS3 helicase from HCV J Mol Biol. 2011;405(5):1139–1153.
  • Yakovlev AA. Crosslinkers and their utilization for studies of intermolecular interactions. Neurochem J. 2009;3(2):139–144.
  • Metz B, Kersten GF, Hoogerhout P, et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. JBiol Chem. 2004;279(8):6235–6243.
  • Lu K, Ye W, Zhou L, et al. Structural characterization of formaldehyde- induced cross-links between amino acids and deoxynucleosides and their oligomers. J Am Chem Soc. 2010;132(10):3388–3399.
  • Toth J, Biggin MD. The specificity of protein-DNA crosslinking by formaldehyde: in vitro and in drosophila embryos. Nucleic Acids Res. 2000;28(2):e4.
  • Zhang L, Zhang K, Prandl R, Schoffl F. Detecting DNA-binding of proteins in vivo by UV-crosslinking and immunoprecipitation. Biochem Biophys Res Commun. 2004;322(3):705–711.
  • Jones S, Daley DT, Luscombe NM, Berman HM, Thornton JM. Protein-RNA interactions: a structural analysis. Nucleic Acids Res. 2001;29(4):943–954.
  • Smith AL, Friedman DB, Yu H, Carnahan RH, Reynolds AB. ReCLIP (reversible cross-link immuno-precipitation): an efficient method for interrogation of labile protein complexes. PloS One. 2011;6(1):e16206.
  • Piran U, Riordan WJ. Dissociation rate constant of the biotin- streptavidin complex. J Immunol Methods. 1990;133(1):141–143.
  • Hnatowich DJ, Winnard P Jr, Virzi F, et al. Technetium-99 m labeling of DNA oligonucleotides. J Nucl Med. 1995;36(12):2306–2314.
  • Kalkhof S, Sinz A. Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal Bioanal Chem. 2008;392(1–2):305–312.
  • Morpurgo M, Bayer EA, Wilchek M. N-hydroxysuccinimide carbonates and carbamates are useful reactive reagents for coupling ligands to lysines on proteins. J Biochem Biophys Methods. 1999;38(1):17–28.
  • Barlow JJ, Mathias AP, Williamson R, Gammack DB. A simple method for the quantitative isolation of undegraded high molecular weight ribonucleic acid. Biochem Biophys Res Commun. 1963;13:61–66.
  • Cathala G, Savouret JF, Mendez B, et al. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335.
  • Auffray C, Rougeon F. Purification of mouse immunoglobulin heavy- chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980;107(2):303–314.
  • Ferrer-Orta C, Arias A, Escarmis C, Verdaguer N. A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol. 2006;16(1):27–34.
  • Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001;40(11):2004–2021.
  • Speers AE, Cravatt BF. Profiling enzyme activities in vivo using click chemistry methods. Chem Biol. 2004;11(4):535–546.
  • Deval J, D’Abramo CM, Zhao Z, et al. High resolution footprinting of the hepatitis C virus polymerase NS5B in complex with RNA. J Biol Chem. 2007;282(23):16907–16916.
  • Running WE, Reilly JP. Ribosomal proteins of Deinococcus radio- durans: their solvent accessibility and reactivity. J Proteome Res. 2009;8(3):1228–1246.
  • Lauber MA, Reilly JP. Structural analysis of a prokaryotic ribosome using a novel amidinating cross-linker and mass spectrometry. J Proteome Res. 2011;10(8):3604–3616.
  • Lundblad RL. Chemical Reagents for Protein Modification, 3rd ed. Boca Raton, FL: CRC Press; 2005.
  • Mendoza VL, Vachet RW. Probing protein structure by amino acid- specific covalent labeling and mass spectrometry. Mass Spectrom Rev. 2009;28(5):785–815.
  • Kannan N, Schneider TD, Vishveshwara S. Logos for amino-acid preferences in different backbone packing density regions of protein structural classes. Acta Crystallogr D Biol Crystallogr. 2000;56(Pt 9):1156–1165.
  • Carven GJ, Stern LJ. Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry. 2005;44(42):13625–13637.
  • Suckau D, Mak M, Przybylski M. Protein surface topology- probing by selective chemical modification and mass spectro- metric peptide mapping. Proc Natl Acad Sci U S A. 1992;89(12):5630–5634.
  • Habeeb AF, Cassidy HG, Singer SJ. Molecular structural effects produced in proteins by reaction with succinic anhydride. Biochim Biophys Acta. 1958;29(3):587–593.
  • Janecki DJ, Beardsley RL, Reilly JP. Probing protein tertiary structure with amidination. Anal Chem. 2005;77(22):7274–7281.
  • Inman JK, Perham RN, DuBois GC, Appella E. Amidination. Methods Enzymol. 1983;91:559–569.
  • Liu X, Reilly JP. Correlating the chemical modification of Escherichia coli ribosomal proteins with crystal structure data. J Proteome Res. 2009;8(10):4466–4478.
  • Reynolds JH. Acetimidation of bovine pancreatic ribonuclease A. Biochemistry. 1968;7(9):3131–3135.
  • Fazili KM, Mir MM, Qasim MA. Changes in protein stability upon chemical modification of lysine residues of bovine serum albumin by different reagents. Biochem Mol Biol Int. 1993;31(5):807–816.
  • Thumm M, Hoenes J, Pfleiderer G. S-methylthioacetimidate is a new reagent for the amidination of proteins at low pH. Biochim Biophys Acta. 1987;923(2):263–267.
  • Beardsley RL, Reilly JP. Quantitation using enhanced signal tags: a technique for comparative proteomics. JProteome Res. 2003;2(1):15–21.
  • Meisenheimer KM, Koch TH. Photocross-linking of nucleic acids to associated proteins. Crit Rev Biochem Mol Biol. 1997;32(2):101–140.
  • Steen H, Jensen ON. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry. Mass Spectrom Rev. 2002;21(3):163–182.
  • Urlaub H, Hartmuth K, Luhrmann R. A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods. 2002;26(2):170–181.
  • Kuhn-Holsken E, Dybkov O, Sander B, Luhrmann R, Urlaub H. Improved identification of enriched peptide RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry. Nucleic Acids Res. 2007;35(15):e95.
  • Kuhn-Holsken E, Lenz C, Sander B, Luhrmann R, Urlaub H. Complete MALDI-ToF MS analysis of cross-linked peptide-RNA oligonucleotides derived from nonlabeled UV-irradiated ribonucleoprotein particles. RNA. 2005;11(12):1915–1930.
  • Lenz C, Kuhn-Holsken E, Urlaub H. Detection of protein-RNA crosslinks by NanoLC-ESI-MS/MS using precursor ion scanning and multiple reaction monitoring (MRM) experiments. J Am Soc Mass Spectrom. 2007;18(5):869–881.
  • Jensen ON, Kulkarni S, Aldrich JV, Barofsky DF. Characterization of peptide-oligonucleotide heteroconjugates by mass spectrometry. Nucleic Acids Res. 1996;24(19):3866–3872.
  • Geyer H, Geyer R, Pingoud V. A novel strategy for the identification of protein-DNA contacts by photocrosslinking and mass spectrometry. Nucleic Acids Res. 2004;32(16):e132.
  • Golden MC, Resing KA, Collins BD, Willis MC, Koch TH. Mass spectral characterization of a protein-nucleic acid photocrosslink. Protein Sei. 1999;8(12):2806–2812.
  • Martin Richter F, Hsiao HH, Plessmann U, Urlaub H. Enrichment of protein-RNA crosslinks from crude UV-irradiated mixtures for MS analysis by on-line chromatography using titanium dioxide columns. Biopolymers. 2009;91(4):297–309.
  • Krivos KL, Limbach PA. Sequence analysis of peptide:oligonucleotide heteroconjugates by electron capture dissociation and electron transfer dissociation. J Am Soe Mass Speetrom. 2010;21(8):1387–1397.
  • Licatalosi DD, Darnell RB. RNA processing and its regulation: global insights into biological networks. Nat Rev Genet. 2010;11(1):75–87.
  • Weeks KM, Mauger DM. Exploring RNA structural codes with SHAPE chemistry. Aee Chem Res. 2011;44(12):1280–1291.
  • Skalsky RL, Corcoran DL, Gottwein E, et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 2012;8(1):e1002484.
  • Malterer G, Dolken L, Haas J. The miRNA-targetome of KSHV and EBV in human B-cells. RNA Biol. 2011;8(1):30–34.
  • Lebedeva S, Jens M, Theil K, et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell. 2011;43(3):340–352.
  • Jungkamp AC, Stoeckius M, Mecenas D, et al. In vivo and transcrip- tome-wide identification of RNA binding protein target sites. Mol Cell. 2011;44(5):828–840.
  • Hoell JI, Larsson E, Runge S, et al. RNA targets of wild-type and mutant FET family proteins. Nat Struct Mol Biol. 2011;18(12):1428–1431.
  • Gottwein E, Corcoran DL, Mukherjee N, et al. Viral microRNA targe- tome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe. 2011;10(5):515–526.
  • Shepherd CM, Borelli IA, Lander G, et al. VIPERdb: a relational database for structural virology. Nucleic Acids Res. 2006;34(Database issue):D386-D389.