254
Views
44
CrossRef citations to date
0
Altmetric
Original Research

Small vessel disease to subcortical dementia: a dynamic model, which interfaces aging, cholinergic dysregulation and the neurovascular unit

, &
Pages 259-281 | Published online: 07 Aug 2019

References

  • Dubois B, Feldman HH, Jacova C, et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 2010;9(11):1118–1127. Epub 2010 Oct 9. doi: 10.1016/S1474-4422(10)70223-420934914
  • Sorbi S, Hort J, Erkinjuntti T, et al. EFNS-ENS guidelines on the diagnosis and management of disorders associated with dementia. Eur J Neurol. 2012;19(9):1159–1179. doi: 10.1111/j.1468-1331.2012.03784.x.22891773
  • Emre M. Clinical features, pathophysiology and treatment of dementia associated with Parkinson’s disease. Handb Clin Neurol. 2007;83:401–419. doi: 10.1016/S0072-9752(07)83018-1.18808925
  • McKeith IG1, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology. 2005;65(12):1863–1872. Epub 2005 Oct 19.16237129
  • Seltman RE, Matthews BR. Frontotemporal lobar degeneration: epidemiology, pathology, diagnosis and management. CNS Drugs. 2012;26(10):841–870. doi: 10.2165/11640070-000000000-00000.22950490
  • Chui H. Vascular dementia, a new beginning: shifting focus from clinical phenotype to ischemic brain injury. Neurol Clin. 2000;18(4):951–978.11072269
  • Román GC, Goldstein M. A population-based study of dementia in 85-year-olds. N Engl J Med. 1993;329(1):63; author reply 64.
  • Román GC, Tatemichi TK, Erkinjuntti T,et al. Vascular dementia: diagnostic criteria for research studies. Reports of the NINDS-AIREN international workshop. Neurology. 1993; 43(2):250–260.8094895
  • World Health Organization for vascular dementia. The ICD-10 Classification of Mental and Behavioral Disorders. Diagnostic Criteria for Research, Geneva. Switzerland World Health Organization; 1993:48–50.
  • Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment - a critical update. Front Aging Neurosci. 2013;5:17. doi: 10.33897fnagi.2013.00017
  • Jellinger KA. The enigma of vascular cognitive disorder and vascular dementia. Acta Neuropathol. 2007;113:349–388.17285295
  • American Psychiatric Association. Major or Mild Vascular Neurocognitive Disorders. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington DC: American Psychiatric Publishing; 2013: 612–615.
  • Pohjasvaara T, Mantyla R, Ylikoski R, Kaste M, Erkiniunnti T. Comparison of different clinical criteria (DSM.III, ADDTC, ICD-10, NINDS-AIREN, DSM-IV) for the diagnosis of vascular dementia. Stroke. 2003;31: 2952–2957. doi:10.1161/01.STR.31.12.2952.
  • Sinha P, Bharath S, Chandra SR. DSM-5 in vascular dementia. Comparison with other diagnostic criteria in a retrospective study. EC Neurol. 2015;2 (3):135–143.
  • Wardlaw JM, Smith EF, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–832. doi:10.1016/S1474-4422(13)70124-823867200
  • Garcia JH, Brown GG. Vascular dementia: neuropatholgic alterations and metabolic brain changes. J Neurol Sci. 1992;109:121–131.1634894
  • Román GC, Sachdev P, Royall DR, et al. Vascular cognitive disorder: a new diagnostic category updating vascular cognitive impairment and vascular dementia. J Neurol Sci. 2004;226:81–87. doi:10.1016/j.jns.2004.09.01615537526
  • Brown MM, Markus HS, Oppenheimer S. Stroke Medicine. New York: Taylor and Francis 2006: 81–83.
  • Tomimoto H. Subcortical vascular dementia. Neurosci Res. 2011;71:193–199 doi:10.1016/j.neures.2011.07.182021821070
  • Thal DR, Grinberg LT, Attems J. Vascular dementia: different forms of vessel disorders contribute to the development of dementia in the elderly brain. Exp Gerontol. 2012;47:816–824. doi:10.1016/j.exger.2012.05.02322705146
  • Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701. doi:10.1016/S1474-4422(10)70104-620610345
  • Bowler JV. Vascular cognitive impairment. J Neurol Neurosurg Psychiatr. 2005;76(5):35–44. doi:10.1136/jnnp.2005.082313
  • Erkinjunnti T, Gauthier S. Diagnosing vascular cognitive impairment and dementia. In: Wahlund LO, Erkinjunnti T, Gauthier S, editors. Concepts and Controversies in Vascular Cognitive Impairment in Clinical Practice Cambridge: Cambridge University Press; 2009:3–9.
  • Ying H, Jianping C, Jianqing Y, Shanquan Z. Cognitive variations among vascular dementia subtypes caused by small-, large-, or mixed-vessel disease. Arch Med Sci. 2016;12(4):747–753. doi:10.5114/aoms.2016.6096227478455
  • Patel B, Markus HS. Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker. Int J Stroke. 2011;6(1):47–59. doi:10.1111/j.1747-4949.2010.00552.x21205241
  • Erkinjunnti T, Inzitari D, Pantoni L, et al. Resaerch criteria for subcortical vascular dementia in clinical trials. J Neur Transm Suppl. 2000;59:23–30
  • Roman GC, Erkinjunnti T, Wallin A, Pantoni L, Chui HC. Subcortical ischemic vascular dementia. Lancet Neurol. 2002;1:426–436.12849365
  • Neumann-Haefelin T, Hoelig S, Berkefeld J, et al. Leukoaraiosi is a risk factor for symptomatic intracererbal hemorrhage after trombolysis for acute stroke. Stroke. 2006;37:2463–2466. doi:10.1161/01.STR.0000239321.53203.ea16931786
  • Palumbo V, Boulanger JM, Hill MD, Inzitari D, Buchan AM; for the CASES Invstigators. Leukoaraiosis and intracerebral hemorrhage after trombolysis in acute stroke. Neurology. 2007;68:1020–1024. doi:10.1212/01.wnl.0000257817.29883.4817389306
  • Launer LJ, Masaki K, Petrovitch H, Foley D, Havlik RJ. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. JAMA. 1995;274:846–1851.
  • Smith EE, Rosand J, Knudsen KA, Hylek EM, Greenberg SM. Leukaraiosis is assocaited with arfarin-related hemorrhage following ischemic stroke. Neurology. 2002;59:193–197.12136056
  • Streifler JY, Elasziw M, Benavente OR, et al. For the North American Symtpomatic Carotid Endarterectomy Trial Group. Prognostic importance of leukoaraiosis in patients with sympotmatic internal carotid stenosis. Stroke. 2002;33:1651–1655.12053006
  • Lin R, Stevensson L, Gupta R, Lytle B, Krieger D. Chronic ischemic white amtter disease is a risk factor for nonfocal neurologic injury after total aortic arch replacement. J Thor Cardiovasc Surg. 2007;133:1059–1065.
  • O’Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case- control study. Lancet. 2010;376:112–123.20561675
  • Iadecola C, Park L, Capone C. Threats to the mind: aging, amyloid, and hypertension. Stroke. 2009;40:40–44.
  • Moretti R, Torre P, Antonello RM, Manganaro D, Vilotti C, Pizzolato G. Risk factors for vascular dementia: hypotension as a key point. Vasc Health Risk Manag. 2008;4(2):2432–2444.
  • Skoog I, Nilsson L, Palmertz B. A population-based study of dementia in 85-year olds. NEJM. 1993;328:153–158.8417380
  • Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health. 1998;88(9):1337–1342.9736873
  • Posner HB, Tang MX, Luchsinger J, Lantigua R, Stern Y, Mayeux R. The relationship of hypertension in the elderly to AD, vascular dementia, and cognitive function. Neurology. 2002;58:1175–1181.11971083
  • Prince MJ, Bird AS, Blizard RA, Mann AH. Is the cognitve function of older aptients affectd by antihypertensive tratement? Results from 54 months of the Medica Research Council’s trial of hypertension in older adults. BMJ. 1996;312:801–805.8608285
  • Hofman A, Ott A, Bretler MM, et al. Atherosclerosis, apolipoproteinE, and prevalence of dementia and Alzheimer’s Dementia in the Rotterdam Study. Lancet. 1997;349:151–154.9111537
  • Tzourio C, Anderson C, Chapman N, et al., Effects of the blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in aptients with cerebrovascualr disease. Arch Intern Med. 2003;163:1069–1075.12742805
  • Forette F, Seux ML, Staessen JA, et al. The prevention of dementia with antihypertensive treatment: new evidence from the systolic hypertension in Europe (syst-Eur) study. Arch Intern Med;2002;162:20146–22052.
  • Knopman DS, Parisi JE, Boeve BF, et al. Vascular dementia in a population-based autopsy study. Arch Neurol. 2003;60(4):569–575.12707071
  • Fitzpatrick AL, Kuller LH, Lopez OL, Kawas CH, Jagust W. Survival following dementia onset: alzheimer’s disease and vascular dementia. J Neurol Sci. 2005;229-230:43–49. Epub 2004 Dec 23.15760618
  • Sicras A, Rejas J, Arco S, et al. Prevalence, resource utilization and costs of vascular dementia compared to Alzheimer’s dementia in a population setting. Dement Geriatr Cogn Disord. 2005;19(5–6):305–315. Epub 2005 Mar 22.15785031
  • Ramirez-Gomez C, Zheng C, Reed B, et al. Neuropsychological profiles differentiate Alzheimer disease from subcortical ischemic vascular dementia in an autopsy-defined cohort. Dement Ag Cogn Disord. 2017;44(1–2):1–11. Doi:10.1159/000477344.
  • Kalaria RN, Erkinjuntti T. Small vessel disease and subcortical vascular dementia. J Clin Neurol 2006;2(1):1–11.20396480
  • Coker LH, Shumaker SA. Type 2 diabetes mellitus and cognition: an understudied issue in women’s health. J Psychosom Res. 2003;54:129–139.12573734
  • Okereke O, Hankinson SE, Hu FB, Grodstein F. Plasma C peptide level and cognitive function among older women without diabetes mellitus. Arch Intern Med. 2005;165:1651–1656.16043685
  • Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyper-insulinemia and risk of Alzheimer disease. Neurology. 2004;63:1187–1192.15477536
  • Morris MC, Scherr PA, Hebert LE, Glynn RJ, Bennett DA, Evans DA. Association of incident Alzheimer disease and blood pressure measured from 13 years before to 2 years after diagnosis in a large community study. Arch Neurol. 2001;58:1640–1646.11594923
  • Moretti R, Esposito F, Torre P, Antonello RM, Bellini G. Hypotension in subcortical vascular dementia, a new risk factor. Wasn’t it hypertension?. In: De La Monte S, editor. Alzheimer’s Disease Pathogenesis-Core Concepts, Shifting Paradigms and Therapeutic Targets Rijeka: InTech; 2011. doi:10.5772/18358
  • Kennelly SP, Lawlor BA, Kenny RA. Blood pressure and dementia - a comprehensive review. Ther Adv Neurol Disord. 2009;2(4):241–260. doi: 10.11177/175628560910348321179532
  • Whitmer RA, Sidney S, Selby J, Johnsoton SC, Yaffe K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology. 2005;64:277–281.15668425
  • Yamada M, Kasagi F, Sasaki H, Masunari N, Mimori Y, Suzuki G. Association between dementia and midlife risk factors: the radiation effects research foundation adult health study. J Am Ger Soc. 2003;51:410–414.
  • Kivipelto M, Helkala EL, Laakso MP, et al. Apolipoprotein E epsilo4 allele, elevated midlife total cholesterol level and high midlife systolic blood pressure are independent risk factors for late life Alzheimer disease. Ann Intern Med. 2002;137:149–155.12160362
  • Lindsay J, Laurin D, Verrault R, et al. Risk factors for Alzheimer’s disease: a prospective analysis form the Canadian Study of health and aging. Am J Epidemiol. 2002;156:445–453.12196314
  • van Dijck EJ, Breteler M, Schmidt R, et al. The association between blood pressure, hypertension, and cerebral white matter lesions. Hypertension. 2004;44:625–650.15466662
  • Kruyer A, Soplop N, Strickland S, Norris EH. Chronic hypertension leads to neurodegeneration in the TgSwDI mouse model of Alzheimer’s disease. Hypertension. 2015;66(1):175–182. Epub 2015 May 4. doi: 10.1161/HYPERTENSIONAHA.115.0552425941345
  • Verhaaren BF, Vernooij MW, de Boer R, et al. High blood pressure and cerebral white matter lesion progressions in the general population. Hypertension. 2013;61(6):1354–1359. doi:10.1161/HYPERTENSIONAHA.111.0043023529163
  • Venkat P, Chopp M, Chen J Models and mechanisms of vascular dementia. Exp Neurol. 2015;272:97–10825987538
  • Jackson CA, Hutchinson A, Dennis MS, et al. Differing risk factor profiles of ischemic stroke subtypes: evidence for a distinctive lacunar arteriopathy. Stroke. 2010;41:624–629.20150553
  • Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ. Low blood pressure and the risk of dementia in very old individuals. Neurology. 2003;61:1667–1672.14694027
  • Zhu L, Viitanen M, Guo Z, Winblad B, Fratiglioni L. Blood pressure reduction, cardiovascular disease, and cognitive decline in the mini-mental state examination in a community population of normal very old people: a three year follow-up. J Clin Epidem. 1998;51(5):385–391.
  • Ruitenberg A, Skoog I, Ott AM, et al. Blood pressure and risk of dementia: results from the Rotterdam Study and the Gothenburg H-70 study. Dementia and Ger Cog Dis. 2001;12:33–39.
  • Burke WJ, Coronado PG, Schmitt CA, Gillespie KM, Chung HD. Blood pressure regulation in Alzheimer’s disease. J Auton Nerv Syst. 1994;48:65–71.8027519
  • Guo Z, Fratiglioni L, Zhu L, Fastbom J, Winblad B, Viitanen M. Occurrence and progression of dementia in a community population aged 75 years and older: relationship of antihyperthensive medication use. Arch Neurol. 1999;59:991–996.
  • Brown WD, Frackowiak RSJ. Cerebral blood flow and metabolism studies in multi-infarct dementia. Alzh Dis Assoc Dis. 1991;5:131–143.
  • Guo Z, Vintanen M, Winblad B, Fratiglioni L. Low blood pressure and incidence of dementia in a very old sample: dependent on initial cognition. J Am Ger Soc. 1994;47:723–726.
  • Mattila K, Haavisto M, Rajala S, Heikinheimo R. Blood pressure and five year survival in the very old. Br Med J (Clin Res Ed). 1988;296:887–889.
  • Nilsson SE, Read S, Berg S, Johansson B, Melander A, Lindblad U. Low systolic blood pressure is associated with impaired cognitive function in the oldest old: longitudinal observations in a population-based sample 80 years and older. Aging Clin Exp Res. 2007;19(1):41–47.17332720
  • Qiu C, Von Strauss E, Fastblom J, Winblad B, Fratiglion L. Low blood pressure and risk of dementia in the Kungsholmen project: a 6-year follw-up study. Arch Neurol. 2003;60:223–228.12580707
  • In’t Veld BA, Ruitenberg A, Hofman A, Stricker BH, Bretrler MM. Antihypertensive drugs and incidence of dementia: the Rotterdam Study. Neurobiol Aging. 2001;22:407–412.11378246
  • Bilazarian S. Hypertension guidelines: clear as mud. theHeart.org. 2014 Available from: http://www.medscape.com/viewarticle/819629. Accessed February 12, 2014.
  • Weber MA, Schiffrin EL, White WB, et al. Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. J Hypertens. 2014;32:3–15.24270181
  • ESH/ESC Task Force for the Management of Arterial Hypertension. 2014 practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC task force for the management of arterial hypertension. J Hypertens. 2013;31:1925–1938.24107724
  • James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–520.24352797
  • Murthy VL, Shah RV, Rubenfire M, Brook RD. A comparison of the treatment implications of American Society of Hypertension and International Society of Hypertension 2013 and Eighth Joint National Committee Guidelines: an analysis of National Health and Nutrition Examination Survey. Hypertension. 2014;64:275–280.24821946
  • Rakugi H. DB 02-2 Strict control of hypertension in the frail elderly: is it beneficial? J Hypertens. 2016;34 Suppl 1 – ISH 2016 Abstract Book: e190.
  • Kario K, Matsuo T, Kobayashi H, Imiya M, Mastuo M, Shimada K. Nocturnal fall of blood pressure and silent cerebrovascular damage in elderly hypertensive patients: advanced silent cerebrovascular damage in extreme dippers. Hypertension. 1996;27:130–135.8591875
  • Nakamura K, Oita J, Yamaguchi T. Nocturnal blood pressure dip in stroke survivors: a pilot study. Stroke. 1995;26:1373–1378.7631340
  • Watanabe N, Imai Y, Nagai K, et al. Nocturnal blood pressure and silent cerebrovascular lesions in elderly Japanese. Stroke. 1996;27:1319–1327.8711795
  • Chamorro A, Pujol J, Saiz A, et al. Periventricular white matter lucencies in patients with lacunar stroke: a marker of too high or too low blood pressure? Arch Neurol. 1997;54:1284–1288.9341575
  • De Buyzere M, Clement DL, Duprez D. Chronic low blood pressure: a review. Cardiovasc Drugs Ther. 199812:29–35.9607130
  • Matsubayashi K, Okumiya K, Wada T, et al. Postural dysregulation in systolic blood pressure is associated with worsened scoring on neurobehavioral function tests and leukoaraiosis in the older elderly living in a community. Stroke. 1997;28:2169–2173.9368559
  • Kohara K, Jiang Y, Igase M, et al. Postprandial hypotension is associated with asymptomatic cerebrovascular damage in essential hypertensive patients. Hypertension. 1999;33:565–568.9931166
  • Gottesman R, Schneider A, Zhou Y ,et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA. 2017. doi:10.1001/jama.2017-3090.
  • Wise J. Vascular risk factors show link to development of Alzheimer’s. BMJ. 2017;357:11847 Doi: 10.1136/bmj.J1847.
  • Jani B, Rajkumar C. Ageing and vascular ageing. Postgrad Med J. 2006;82(968):357–362.16754702
  • de la Torre JC. Vascular basis of Alzheimer’s pathogenesis. Ann N Y Acad Sci. 2002;977:196–215.12480752
  • Mathias CJ, Kimber JR. Postural hypotension: causes, clinical features, investigation, and management. Annu Rev Med. 1999;50:317–336.10073281
  • Roriz-Filho JS, Bernardes Silva Filho SR, Rosset I, Roriz-Cruz M. Postural blood pressure dysregulation and dementia: evidence for a vicious circle and implications for neurocardiovascular rehabilitation In: Halliday JT ,editor. Cardiac Rehabilitation. New York: Novascience Publisher Inc.; 2009:1–37. ISBN: 987-1-60741-918-1.
  • Londos E, Passant U, Gustafson L. Blood pressure and drug treatment in clinically diagnosed LBD and AD. Arch Gerontol Ger. 2000;30:35–46
  • Kaufman H, Biaggioni I. Autonomic failure in neurodegenerative disorders. Sem Neurol. 2003;23(4):351–363.
  • Puisieux F, Monaca P, Deplanque D, et al. Relationship between leuko—araiosis and blood pressure variability in the elderly. Eur Neur. 2001;46:115–120.
  • Burke WJ, Coronado PG, Schmitt CA, Gillespie KM, Chung HD. Blood pressure regulation in AD. J Auton Nerv Syst. 1994;48:65–718027519
  • Englund E. A White Matter Disease in Dementia. A Study with Special Reference to AD [thesis]. Lund: Lund University; 1988:7–43.
  • Weiner DE, Gaussoin SA, Nord J, et al. Cognitive function and kidney disease: baseline data from the Systolic Blood Pressure Intervention Trial (SPRINT). Am J Kidney Dis. 2017; 70(3): 357–36728606731
  • Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathol. 1969;12:1–15. doi:10.1007/BF00685305
  • Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996;27:1641–1647.8784142
  • Schmidt R, Schmidt H, Haybaeck J, et al. Heterogeneity in age-related white matter changes. Acta Neuropathol. 2011;122:171–185. doi:10.1007/s00401-011-0851-x21706175
  • Hommet C, Mondon K, Constans T, et al. Review of cerebral microangiopathy and Alzheimer’s disease: relation between white matter hyperintensities and microbleeds. Dement Geriatr Cogn Disord. 2011;32:367–378. doi:10.1159/00033556822301385
  • Munoz DG, Hastak SM, Harper B, et al. Pathologic correlates of increased signals of the centrum ovale on magnetic resonance imaging. Arch Neurol. 1993;50: 492–497.8489405
  • Jellinger KA, Attems J. Prevalence and pathology of vascular dementia in the oldest-old. J Alzheimers Dis. 2010;21:1283–1293. doi:10.3233/JAD-2010-10060321504129
  • Ince P. Acquired forms of vascular dementia In: Kalimo H, editor. Cerebrovascular Diseases. Basel: ISN Neuropath Press; 2005:316–323.
  • Hachinski V, Iadecola C, Petersen RC, et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke-Network Vascular cognitive impairment harmonization standards. Stroke. 2006;37:2220–2241. doi:10.1161/01.STR.0000237236.88823.4716917086
  • Attems J, Jellinger K, Thal DR, Van Nostrand W. Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2011;37:75–93. doi:10.1111/j.1365-2990.2010.01137.x20946241
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi:10.1126/science.107299412130773
  • Jiménez-Balado J, Riba-Llena I, Garde E, et al. Prevalence of hippocampal enlarged perivascular spaces in a sample of patients with hypertension and their relation with vascular risk factors and cognitive function. J Neurol Neurosurg Psychiatry. 2018;89:1–6. doi:10.1136/jnnp-2017-316724.28847793
  • Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018. doi:10.1038/nrneurol.2017.188
  • Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 2018;135(3):387–407. doi:10.1007/s00401-018-1812-429428972
  • Huijts M, Duits A, Staals J, et al. Basal ganglia enlarged perivascular spaces are linked to cognitive function in patients with cerebral small vessel disease. Curr Neurovasc Res. 2014;11:136–141. doi:10.2174/156720261166614031010224824606607
  • Potter GM, Marlborough FJ, Wardlaw JM. Wide variation in definition, detection and description of lacunar lesions on imaging. Stroke. 2011;42:359–366. doi:10.1161/STROKEAHA.110.59475421193752
  • Potter GM, Doubal FN, Jackson CA, et al. Counting cavitating lacunes underestimates the burden of lacunar infarction. Stroke. 2010;41: 267–272. doi:10.1161/STROKEAHA.109.56630720044528
  • Shi Y, Wardlaw JM. Update on cerebral small vessel disease. A dynamic whole-brain disease. Stroke Vasc Neurology. 2016;1:e.000035.
  • Wardlaw JM, Doubal F, Armitage P, et al. Lacunar stroke is associated with diffuse blood brain barrier dysfunction. Ann Neurol. 2009;65:194–202. doi:10.1002/ana.2154919260033
  • De Silva TM, Faraci FM. Microvascular dysfunction and cognitive impairment. Cell Mol Neurobiol. 2016;36(2):241–258. Doi:10.1007/s10571-015-0308-1.26988697
  • Joutel A, Faraci FM. Cerebral small vessel disease; insights and opportunities from mouse models of collagen IV related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2014;45:1215–1221. doi:10.1161/STROKEAHA.113.00287824503668
  • Lammie AG. Small vessel disease In: Kalimo H., editor. Cerebrovascular Diseases. Basel: ISN Neuropath Press; 2005:85–91.
  • Rosenberg GA. Neurological diseases in relation to the blood- brain barrier. J Cereb Blood Flow Metab. 2012;32:1139–1151. doi:10.1038/jcbfm.2011.19722252235
  • Pantoni L. Pathophysiology of age-related cerebral white matter changes. Cerebrovasc Dis. 2002;13(2):7–10. doi:10.1159/000049143
  • Englund E. White matter pathology of vascular dementia In: Chui E editor. Vascular Dementia. London: M. Dunitz; 2004:117–130.
  • Englund EA, Person B. Correlations between histopathologic white matter changes and proton MR relaxation times in dementia. Alzheimer Dis Assoc Disord. 1987;1:156–170. doi:10.1097/00002093-198701030-000083453747
  • Román GC Senile dementia of the binswanger type: a vascular form of dementia in the elderly. JAMA. 1987;258:1782–1788. doi:10.1001/jama.1987.034001300960403625988
  • Moody DM, Brown WR, Challa VR, Anderson RL. Periventricular venous collagenosis: association with leukoaraiosis. Radiology. 1995;194:469–476. doi:10.1148/radiology.194.2.78247287824728
  • Vinters HV, Ellis WG, Zarow C, et al. Neuropathological substrate of ischemic vascular dementia. J Neuropathol Exp Neurol. 2000;59:931–945. doi:10.1093/jnen/59.11.93111089571
  • Garcia JH, Lassen NA, Weiller C, Sperling B, Nakagawara J. Ischemic stroke and incomplete infarction. Stroke. 1996;27:761–765.8614945
  • Dalkara T, Alarcon-Martinez L. Cerebral micro-vascular signaling in health and disease. Brain Res. 2015;1623:3–17. doi: 10.1016/j.brainres.2015.03.04725862573
  • Giannakopoulos P, Gold G, Kowaru E, et al. Assessing the cognitive impact of Alzheimer disease pathology and vascular burden in the aging brain: the Geneva experience. Acta Neuropathol. 2007;113:1–12. doi:10.1007/s00401-006-0144-y17036244
  • Launer LJ, Hughes TM, White LR. Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging Study Autopsy Study. Ann Neurol. 2011;70:774–780. doi:10.1002/ana.2252022162060
  • Smallwood A, Oulhaj A, Joachim C, et al. Cerebral subcortical small vessel disease and its relation to cognition in elderly subjects: a pathological study in the Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort. Neuropathol Appl Neurobiol. 2012;38:337–343. doi:10.1111/j.1365-2990.2011.01221.x21951164
  • Kramer JH, Reed BR, Mungas D, Weiner MW, Chui H Executive dysfunction in subcortical ischaemic vascular disease. J Neurol Neurosurg Psychiatr. 2002;72:217–220. doi:10.1136/jnnp.72.2.217
  • Burton E, Ballard C, Stephens S, et al. Hyperintensities and fronto-subcortical atrophy on MRI are substrates of mild cognitive deficits after stroke. Dement Geriatr Cogn Disord. 2003;16:113–118. doi:10.1159/00007068412784036
  • Tullberg M, Fletcher E, DeCarli C, et al. White matter lesions impair frontal lobe function regard- less of their location. Neurology. 2004;63:246–253. doi:10.1212/01.WNL.0000130530.55104.B515277616
  • Gold G, Kovari E, Herrmann FR, et al. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. Stroke. 2005;36:1184–1188. doi:10.1161/01.STR.0000166052.89772.b515891000
  • Van Der Veen PH, Muller M, Vinken KL, et al. Longitudinal relationship between cerebral small vessel disease and cerebral blood flow. The second manifestations of arterial disease-magnetic resonance study. Stroke. 2015;46:1233–1238 doi:10.1161/STROKEAHA.114.00803025804924
  • Gouw AA, van Der Flier WM, Fazekas F et al. Progression of white matter hyperintensities and incidence of new lacunes over a 3-year period: the leukoaraiosis and disability study. Stroke. 2008;39:1414–1420. doi:10.1161/STROKEAHA.107.49853518323505
  • Schmidt R, Seiler S, Loitfelder M. Longitudinal change of small vessel disease related brain abnormalities. J Cerebr Blood Flow Metab. 2016;36:26–39. doi:10.1038/jcbfm.2015.72
  • Munoz-Maniega S, Chappell FM, Valdes-Henrandez ML, et al. Integrity of normal appearing white matter: influence of age, visible lesion burden and hypertension in patients with small-vessel disease. J Cerebr Blood Flow Metab. 2016 Doi: 10.1177/027168x16635657.
  • Nichols WW, O’Rourke MF McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 5th ed. London: Hodder Arnold;2005.
  • Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part I: aging arteries: a “set up” for vascular disease. Circulation. 2003;107:139–146. doi:10.1161/01.CIR.0000048892.83521.5812515756
  • Ganong MD, William F. Review of Medical Physiology, Twenty-Second ed. New York: The McGraw-Hill Companies, Inc; 2005:587.
  • Volpe M, Scuteri A. Management of risk factors in vascular dementia: hypertension. Hot Topics Neurol Psychiatry. 2008;1:17–22.
  • Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46:454–462. doi:10.1161/01.HYP.0000177474.06749.9816103272
  • O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–204. doi:10.1161/01.HYP.0000184108.12155.6b15911742
  • Cervós-Navarro J, Matakas F, Roggendorf W, Christmann U. The morphology of spastic intracerebral arterioles. Neuropathol Appl Neurobiol. 1978;4:369–379. doi:10.1111/j.1365-2990.1978.tb01349.x724092
  • Laurent S, Katsahian S, Fassot C, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34:1203–1206. doi:10.1161/01.STR.0000065428.03209.6412677025
  • Baumbach GL, Siems JE, Heistad DD. Effects of local reduction in pressure on distensibility and composition of cerebral arterioles. Circ Res. 1991;68:338–351. doi:10.1161/01.RES.68.2.3381991342
  • Liao D, Cooper L, Cai J, et al. The prevalence and severity of white matter lesions, their relationship with age, ethnicity, gender, and cardiovascular disease risk factors: the ARIC Study. Neuroepidemiology. 1997;16:149–162 doi:10.1159/0003688149159770
  • Paulson OB, Strandgaard S, Edvinson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–192.2201348
  • Dawson SL, Blake MJ, Panerai RB, Potter JF. Dynamic but not static cerebral autoregulation is impaired in acute ischemic stroke. Cerebrovasc Dis. 2000;10:126–132. doi:10.1159/00001604110686451
  • Novak V. Cognition and Hemodynamics. Curr Cardiovasc Risk Rep. 2012;6(5):380–396. doi:10.1007/s12170-012-0260-223050027
  • Shim Y, Yoon B, Shim DS, Kim W, An JY, Yang DW. Cognitive correlates of cerebral vasoreactivity on transcranial doppler in older adults Journal of Stroke and Cerebrovascular Diseases, 2015:1262–1269 doi:10.1016/j.jstrokecerebrovasdis.2015.01.03125906930
  • Roher AE, Garami Z, Tyas SL, et al. Transcranial Doppler ultrasound blood flow velocity and pulsatility index as systemic indicators for Alzheimer’s disease. Alzheimers Dement. 2011;7(4):445–455. doi:10.1016/j.jalz.2010.08.22921388892
  • Wallin A, Blennow K, Gottfries CG. Neurochemical abnormalities in vascular dementia. Dementia. 1989;13:658–667.
  • Szilagy AX, Nemeth A, Martini E, et al. Serum and CSF cholinesterase activity in various kind of dementia. Eur Arch Psych Neur Sci. 1987;236:309–311. doi:10.1007/BF00380958
  • Sakurada I, Alufuzoff I, Winblad B, et al. Substance P like immunoreactivity, choline acetyltransferase activity and cholinergic muscarinic receptors in AD and MID. Brain Res. 1990;521(1–29):329–332. doi:10.1016/0006-8993(90)91561-t1698512
  • Serrador JM, Freeman R. Enhanced cholinergic activity improves cerebral blood flow during orthostatic stress. Frontiers in Neurol. 2017;8: 103 Doi:10.3389/fneur.2017.00103.
  • Tune L, Brandt J, Frost JJ, et al. Physstigmine in AD: effects on cognitive functioning, cerebral glucose metabolism analyzed by single photon emission tomography. Acta Psych. Scand Suppl. 1991;366:61–65. doi:10.1111/j.1600-0447.1991.tb03111.x
  • Scremin OU, Sonneschein RR, Rubinstein EH. Cholinergic cerebral vasodilatation in the rabbit: absence of concomitant metabolic activation. J Cereb Blood Flow Metab. 1982;2(2):241–247. doi:10.1038/jcbfm.1982.246804471
  • Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging, 2001;18(9):685–716. doi:10.2165/00002512-200118090-0000411599635
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795. doi:10.1038/nature0529217051205
  • Raz N. The ageing brain: structural changes and their implications for cognitive ageing In: Dixon R, Bäckman L, Nilsson L, editors. New Frontiers in Cognitive Ageing. Telangana, India: Oxford University Press; 2004:115–134.
  • Petito C. Trasnformation of postisichemic perineuronal glial cells. I. Electron microscope studies. J Cerebr Blood Flow Metabol. 1986;6:616–624. doi:10.1038/jcbfm.1986.109
  • Petito CK, Olarte JP, Roberts B, Nowak TS, Pulsinelli WA. Selective glial vulnerability following transient global ischemia in rat brain. J Neuropath Exp Neurol. 1998;57(3):231–238. doi:10.1097/00005072-199803000-000049600215
  • Irving EA, Nicoll J, Graham DI, Dewar D. Increased tau immunoreactivity in oligodendrocytes following human stroke and head injury. Neurosci Lett. 1996;213:189–192. doi:10.1016/0304-3940(96)12856-18873146
  • Irving EA, Yatsushiro K, McCullough J, Dewar R. Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radical. J Cererb Blood Flow Metab. 1997;17:612–622.
  • Furukawa S, Sameshima H, Yang L, Hariskuma M, Ikenoue T. Regional differences of microglial accumulation within 72 hrs of hypoxia-ischemia and the effect of acetylcholine receptor agonist on brain damage and microglial activation in newborn rats. Brain Res. 2014;1562:52–58. doi:10.1016/j.brainres.2014.03.02824680905
  • Gehrmann J, Bonnekoh P, Miyazawa T. Immunoistochemical study of an early microglial activation in ischemia. J Cer Blood Flow Metab. 1992;12:257–269. doi:10.1038/jcbfm.1992.36
  • Rupalla K, Allegrin PR, Saver D. Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol. 1998;96:172–178.9705133
  • Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci. 2011;33:199–209. doi:10.1159/00032898921757877
  • Yuan TH, Yu HM. Notch signaling: key role in intrauterin infection/inflammation, embryonic development and white matter damage. J Neurosci Res. 2010;88:461–468. doi:10.1002/jnr.2222919768798
  • Irving EA, Bentley DL, Parsons AA. Assessment of white matter injury following prolonged focal cerebral ischaemia in the rat. Acta Neuropathol. 2001;102(6):627–635.11761724
  • Tomimoto H, Ihara M, Wakita H, et al. Chronic cerebral hypoeprfusion induces white matter lesions and loss of oligodendroglia with DNA fragmentation in the rat. Acta Neuropathol. 2003;106(6):527–534. doi:10.1007/s00401-003-0749-313680276
  • Wakita H, Tomimoto H, Akiguchi I, et al. Axonal damage and demyelination in the white matter after chronic cerebral hypoperfusion in the rat. Brain Res. 2002;924(1):63–70. doi:10.1016/s0006-8993(01)03223-111743996
  • Wakita H, Tomimoto H, Akiguchi I, Kimura J. Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunoistochemical study. Acta Neuropathol. 1994;87(5):484–492.8059601
  • Farkas E, Donka G, de Vous RAI, Mihaly A, Bari F, Luiten PGM. Experimental cerebral hypoeprfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol. 2004;108: 57–64. doi:10.1007/s00401-004-0864-915138777
  • Zhang ZG, Bower L, Zhang RL, Chen S, Windham JP, Chopp M. Three dimensional measuremtn of cerebral microvascular plasma perfusion, glial fibrillary acid protein and microtubule associated P-2 immunoreactivity after embolic stroke in rats: a double fluorescent labeled laser scanning confocal microscopic study. Brain Res. 1999;844(1–2):55–66. doi:10.1016/s0006-8993(99)01886-710536261
  • Tomimoto H, Akiguchi I, Wakita H, Svenaga T, Nakamura S, Kimura J Regressive changes of astroglia in white matter lesions in cerebrovascular disease and AD patients. Acta Neuropathol. 1997;94(2): 146–152. doi:10.1007/s0040100506869255389
  • Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–866 doi:10.1016/j.neuron.2013.10.00824267647
  • Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–866. Doi:10.1016/jneuron.2013.10.008.24267647
  • Lo EH, Rosenberg GA. The neuroscience unit in health and disease introduction. Stroke. 2009;40:S2–S3. doi:10.1161/STROKEAHA.108.53440419064779
  • Filous AS, Silver J. Targeting astrocytes in CNS injury and disease: a translational research approach. Prog Neurobiol. 2016;144:173–187. Doi:10.1016/j.pneurobio.2016.03.009.27026202
  • Cai W, Zhang K, Li P, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative disease: an ageing effect. Ageing Res Rev. 2017;34:77–87. Doi: 10.1016/jar.2016.09.006.27697546
  • Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;98(1):17–42. Doi:10.1016/jneuron.2017.07030.
  • Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–476. doi:10.1146/annurev.neuro.29.051605.11281916776593
  • Uhurovoa H, Kilic K, Tian P, et al. Cell-type specificity of neurovascular coupling in cerebral cortex. ELife. 2016;5:155 Doi.10.7554/elife.14315.
  • Longden TA, Dabertrand F, Koide M, et al. Capillary K+ sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci. 2017: 275: A1489–14812.doi.10.1038/nm.4533.
  • Payabavash S, Souza LCS, Wang Y, et al. Regional ischemic vulnerability of the brain to hypoperfusion: the need for location specific CT perfusion thresholds in acute stroke patients. Stroke. 2011;42(5):1255–1260. doi: 10.1161/STROKEAHA.110.60094021493917
  • Cheng B, Golsari A, Fiehler J, Rosenkranz M, Gerloff C, Thomalla G. Dynamics of regional distribution of ischemic lesions in middle cerebral artery trunk occlusion relates to collateral circulation.J Cereb Blood Flow Metab. 2010. doi: 10.1038/jcbfm.2010.185.
  • Dijkhuizen RM, Knollema S, van der Worp HB, et al. Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat: evidence for region-specific sensitivity and delayed damage. Stroke. 1998;29:695–7049506615
  • Garcia JH, Liu KF, Ye ZR, Gutierrez JA. Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke. 1997;28:2303–2309.9368580
  • Konaka K, Miyashita K, Naritomi H. Changes in diffusion-weighted magnetic resonance imaging findings in the acute and subacute phases of anoxic encephalopathy. J Stroke Cerebrovasc Dis. 2007;16:82–83. doi:10.1016/j.jstrokecerebrovasdis.2006.10.00717689399
  • Ravens JR. Vascular changes in the human senile brain. Adv Neurol. 1978;20:487–501676912
  • Klassen AC, Sung JH, Stadlan EM. Histological changes in cerebral arteries with increasing age. J Neuropathol Exp Neurol. 1968;27:607–623. doi:10.1097/00005072-196810000-000065687757
  • Mega MS, Cummings JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 1994;6:358–370. doi:10.1176/jnp.6.4.3587841807
  • Yao H, Sadoshima S, Kuwabara Y, et al. Cerebral blood flow and oxygen metabolism in patients with vascular dementia of the Binswanger type. Stroke. 1990;21:1694–1699. doi:10.1161/01.STR.21.12.16942264076
  • Furuta A, Ishii N, Nishihara Y, Horie A. Medullary arteries in aging and dementia. Stroke. 1991;22:442–446. doi:10.1161/01.STR.22.4.4422024272
  • Tak S, Yoon SJ, Jang J, Yoo K, Jeong Y, Ye JC. Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simulataneous near-infrared spectroscopy and FMRI measurements. Neuroimage. 2011;55:176–184. doi:10.1016/j.neuroimage.2010.11.04621094685
  • Schroeter M, Cutini S, Wahl M, Scheid R, Yves von Cramon D. Neurovascualr coupling is impaired in cerebral microangiopathy an event related stroop study. Neuroimage. 2007;34(1):26–34. doi:10.1016/j.neuroimage.2006.09.00117070070
  • Bar K, Boettger M, Seidler N, Mentzelh TC, Sauer H. Influence of galantamine on vasomotor reactivity in AD and vascular dementia due to microangiopathy. Stroke. 2007;38(12):3186–3192. doi:10.1161/STROKEAHA.107.49203317962592
  • De Reuck J, Decoo D, MArchau M, Santens P, Lemahieu I, Strijckmans K. Positron emission tomography in vascular dementia. J Neurol Sci. 1998;154(1):55–61.9543322
  • Yoshikawa T, Murase K, Oku N, et al. Statistical image analysis of cerebral blood flow in vascular dementia with small-vessel disease. J Nucl Med. 2003;44(4):505–511.12679392
  • Yang D, Kim B, Park J, Kim S, Kim E, Sohn H. Analysis of cerebral blood flow of subcortical vascular dementia with single photon emission computed tomography: adaptation of statistical aprametric mapping. J Neurol Sci J Biomed. 2002;203:199–205. doi:10.1016/S0022-510X(02)00291-5
  • Ginsberg S, Martin L. Axonal transection in adult rat brain induces transynaptic apoptosis and persistent atrophy of target neurons. J Neurotrauma. 2002;19(1):99–109. doi:10.1089/08977150275346027711852982
  • Heiss W, Podreka I. Role of the PET and sPECT in the assessment of ischemic cererbovascular disease. Cerebrovasc Brain Metab Rev. 1993;5(4):235–263.8110593
  • Chui H. Subcortical ischemic vascular dementia (SIVD). Neurol Clin. 2007;25(3):717. doi: 10.1016/j.ncl.2007.04.00317659187
  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ. 1978;2:1457–1459. doi:10.1136/bmj.2.6150.1457719462
  • Erkinjuntti T, Kurz A, Gauthier S, Bullock R, Lilienfeld S, Damaraju CV. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomized trial. Lancet. 2002;359:1283–1290. doi:10.1016/S0140-6736(02)07571-211965273
  • Wilkinson D, Doody R, Helme R, et al. Donepezil in vascular dementia A randomized, placebo-controlled study. NEUROLOGY. 2003;61:479–486. doi:10.1212/01.WNL.0000078943.50032.FC12939421
  • Pratt RD, Perdomo CA, Surick IW, Ieni JR. Donepezil: tolerability and safety in Alzheimer’s disease. Int J Clin Pract. 2002;56:710–717.12469988
  • Auchus AP, Brashear HR, Salloway S, et al. Galantamine treatment of vascular dementia: a randomized trial. Neurology. 2007; 69: 448–458. doi:10.1212/01.wnl.0000266625.31615.f617664404
  • Ballard C, Sauter M, Scheltens P, et al. Efficacy, safety and tolerability of rivastigmine capsules in patients with probable vascular dementia: the VantagE study. Curr Med Res Opin. 2008; 24: 2561–2574. doi:10.1185/0300799080232814218674411
  • Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462. doi:10.1038/3501307010839541
  • Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–388. doi:10.1038/nature0133912508119
  • Conejero-Goldberg C, Davies P, Ulloa L. Alpha7 nicotinic acetylcholine receptor: a link between inflammation and neurodegeneration. Neurosci Biobehav Rev. 2008;32:693–706. doi:10.1016/j.neubiorev.2007.10.00718180036
  • Pavlov VA, Tracey KJ. Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochem Soc Trans. 2006;34:1037–1040. doi:10.1042/BST034103717073745
  • Maelicke A. Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Dement Geriatr Cogn Disord. 2000;11 Suppl 1: 11–18. doi:10.1159/000051227
  • Tohgi H, Abe T, Kimura M, Saheki M, Takahashi S. Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with Alzheimer-type dementia. J Neural Transm. 1996;103:1211–1220. doi:10.1007/BF012712069013408
  • Wallin A, Sjogren M, Blennow K, Davidsson P. Decreased cerebrospinal fluid acetylcholinesterase in patients with subcortical ischemic vascular dementia. Dement Geriatr Cogn Disord. 2003;16:200–207. doi:10.1159/00007280314512714
  • Yamada M, Lamping KG, Duttaroy A, et al. Cholinergic dilatation of cerebral blood vessels is abolished in M5 muscarinic acetylcoline receptor knockout mice. Prc Natl Ac Sci USA. 2001;98:14096–14101. doi:10.1073/pnas.251542998
  • Togashi H, Matsumoto M, Yoshioka M, et al. Neurochemical profiles in cerebrospinal fluid of stroke-prone spontaneously hypertensive rats. Behav Lett. 1994;166:117–120.
  • Togashi H, Kimura S, Matsumoto M, et al. Cholinergic changes in the hippocampus of stroke-prone spontaneously hypertensive rats. Stroke. 1996;27:520–526.8610323
  • Scremin OU, Li MG, Scremin AM, Jenden DJ. Cholinesterase inhibition improves blood flow in the ischemic cerebral cortex. Brain Res Bull. 1997;42:59–70. doi:10.1016/S0361-9230(96)00207-98978935
  • Furukawa S, Sameshima H, Yang L, Ikenove T. Activation of acetylcholine receptros and microglia in hypoxic-ischemic brain damage in newborn rats. Brain and Develop. 2013;35:607–613. doi:10.1016/j.braindev.2012.10.006
  • Hejmadi MV, Dajas-BAilador F, Barns SM, Jones B, Wonnacott S. Neuroprotection by nicotine against hypoxia-induced apopotosis in cortical cultures involves activation of multiple nicotinic acethylcholine receptor subtypes. Mol Cell Neurosci. 2003;24:779–786.14664825
  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89:73–120. doi:10.1152/physrev.00015.200819126755
  • Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX. Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. J Neurosci. 1999;19:2693–2705.10087082
  • Alkondon M, Albuquerque EX. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res. 2004;145:109–120. doi:10.1016/S0079-6123(03)45007-314650910
  • Court J, Perry E, Kalaria R. Neurotransmitter control of the cerebral vasculature and abnormalities in vascular dementia In: Erkinjuntti T, Gauthier S, editors. Vascular Cognitive Impairment. Martin Dunitz: London; 2002:167–185.
  • Roman GC, Kalaria RN. Vascular determinants of cholinergic deficits in AD and vascular dementia. Neurobiol Aging. 2006;27:1769–1785.16300856
  • Roman GC. Brain Hypoperfusion: a critical factor in vascular dementia. Neurol Res. 2004;26:454–458 doi:10.1179/01616410422501768615265263
  • Scarr E. Muscarinc receptors: their roles in disorders of the central nervous system and potential therapeutic targets. CNS Neurosci Ther. 2012;18:369–379. Doi 10.1111/j.1755-5949.201100249.x22070219
  • Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22:273–28010354606
  • Vasquez J, Purve MJ. The cholinergic pathway to cerebral blood vessels. I. Morphological Studies. Pflugers Arch. 1979;379:157–163. doi:10.1007/BF00586942571110
  • Tong XK, Hamel E. Regional cholinergic denervation of cortical microvessels and nitric oxid synthase-containing neurons in AD. Neuroscience. 1999;92:163–175.10392839
  • Cauli B, Tong XK, Rancillac A, et al. Cortical GABA interneurons in neurovascular coupling: relays for the subcortical vasoactive pathways. J Neurosci. 2004;24:8940–8949. doi:10.1523/JNEUROSCI.3065-04.200415483113
  • Vanhoutte PM. Endothelium and control of vascular function. State of the art lecture. Hypertension. 1989;13:658–667.2661425
  • Kocharyan A, Fernandes P, Tong XP, Vaucher E, Hamel E. Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. J Cerebr Blood Flow Metab. 2008;28:221–231. doi:10.1038/sj.jcbfm.9600558
  • Lacombe P, Sercombe R, Vaucher E, Seylaz J. reduced cortical vasodilatory response to stimulation of the nucleus basalis of Meynert in the aged rats and evidence for a control of the cerebral circulation. Ann Ny Acad Sci. 1997;826:410–415. doi:10.1111/j.1749-6632.1997.tb48494.x9329714
  • Elhusseiny A, Hamel E. Muscarinic but not nicotinic acetylcholine receptros mediated nitric oxide dependent dilatation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cerebr Blood Flow Metab. 2000:298–305. doi:10.1097/00004647-200002000-00011
  • Yamada M, Lamping KG, Duttaroy A, et al. Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. PNAS. 2001;98(24):14096–14101. doi:10.1073/pnas.25154299811707605
  • Salloway S. Subcortical Vascular Dementia: Binswanger’s and CADASIL. Honolulu: American Academy of Neurology (AAN); 2003:(CD 8AC.006-2):1–29.
  • Mirski MA. Pharmacology of Blood Pressure Management during Cerebral Ischemia.Miami: American Academy of Neurology (AAN); 2005:5PC-004:456–469.
  • Wallin A, Blennow K, Gottfries CG. Neurochemical abnormalities in vascular dementia. Dementia. 1989;1:120–130.
  • Bohnen NI, Muller MLTM, Kuwabara H, Ocnstantien GM, Studentski SA. Age-associated leukoaraiosis and cortical cholinergic deafferentation. Neurology. 2009;72:1411–1416. doi:10.1212/WNL.0b013e3181a187c619380700
  • Szilagy AK, Nemeth A, Martini E, Lendvai B, Venter V. Serum and CSF cholinesterase activity in various kind of dementia. Eur Arch Psychiatry Neurol Sci. 1987;236:309–311.3653153
  • Kimura S, Saito H, Minami M, et al. Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Toxicology. 2000;153:167–187. doi:10.1016/S0300-483X(00)00312-711090955
  • Tomimoto H, Ohtani R, Shibata M, Nakamura N, Ihara M Loss of cholinergic pathways in vascular dementia of the Binswanger type. Dement Geriatr Cogn Disord 2005; 19:282–288. doi:10.1159/00008455315785029
  • Wang J, Zhang HY, Tang XC. Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment. Acta Pharamcol Sinica. 2009;30:879–888. doi:10.1038/aps.2009.82
  • Mann DM, Yates PD, Marcyniuk B. The nucleus basalis of Meynert in multi-infarct dementia. Acta Neuropathol. 1986;71:332–337.3799146
  • Sakurada T, Alufuzoff I, Winblad B, Nordberg A. Substance P like immunoreactivity, choline acetyltransferase activity and cholinergic muscarinic receptors in Alzheimer’s disease and multi-infarct dementia. Brain Res .1990;521:329–332. doi:10.1016/0006-8993(90)91561-t1698512
  • Jung S, Zarow C, Mack WJ, et al. Preservation of neurons of the nucleus basalis in subcortical ischemic vascular disease. Arch Neurol. 2012;69:879–886. doi: 10.1001/archneurol.2011.287422393167
  • Swartz RH, Sahlas DJ, Black SE. Strategic involvement of cholinergic pathways and executive dysfunction: does location of white matter signal hyperintensities matter? J Stroke Cerebrovasc Dis. 2003;12:29–36. doi:10.1053/jscd.2003.517903901
  • Wardlaw JM, Smith C, Dichgans M. Mechanism of sporadic cerebral small vessel disease: insight from neuroimaging. Lancet Neurol. 2013;12:483–497. doi:10.1016/S1474-4422(13)70060-723602162
  • De Silva TM, Miller AA. Cerebral small vessel disease: targeting oxidative stress as a novel therapeutic strategy. Frontiers in Pharmacol. 2016. doi:10.3389/fpharm.2016.00061.
  • Chan SL, Umesalma S, Baumbach GL. Epidermal growth factor receptor is critical for angiotensin II mediated hypertrophy in cerebral arterioles. Hypertension. 2015;65:808–812. Doi: 10.1161/HYEPRTENSIONHA.114.04794;
  • Umesalma S, Houwen FK, Baumbach GL, Chan SL. Roles of ceveolin-1 in angiotensin-ii induced hypertrophy and inward remodeling of cerebral pial arterioles. Hypertension. 2016;67:623–629.26831194
  • Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD.Autonomic neural control of dynamic cerebral autoregulation in humans. Circul. 2002;106:1814–1820. doi:10.1161/01.CIR.0000031798.07790.FE
  • Hamner JW, Tan CO, Lee K, Cohen MA, Taylor JA. Sympathetic control of the cerebral vasculature in humans. Stroke. 2010;41;102–109. doi:10.1161/STROKEAHA.109.55713220007920
  • Hamner JW, Tan CO, Tzeng YC, Taylor JA. Cholinergic control of the cerebral vasculature in humans. J Physiol. 2012;590(24):6343–6352. doi:10.1113/jphysiol.2012.24510023070700
  • Brown WR, Thore CR. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl NeuroBiol. 2011;37:56–74. doi:10.1111/j.1365-2990.2010.01139.x20946471
  • Barrett KM, Brott TG, Brown RD Jr, et al. Enhancing recovery after acute ischemic stroke with donepezil as an adjuvant therapy to standard medical care: results of a phase IIA clinical trial. J Stroke Cerebrovasc Dis. 2011;20:177–182. doi:10.1016/j.jstrokecerebrovasdis.2010.12.00921295494
  • Silver JM, Koumaras B, Mneg X, et al. Long term effects of rivastigmine capsules in patients with transient brain injury. Brain Inj. 2009;23:123–132. doi:10.1080/0269905080264969619191091
  • Gericke A, Sniatechi JJ, Mayer VG, et al. Role of the M1, M3 and M5 muscarinic Ach receptors in cholinergic dilatation of small Arteries studied with gene targeted mice. Am J Physiol Heart Circ Physiol. 2011;300; H1602–H1608. doi:10.1152/ajpheart.00982.201021335473
  • Elhusseiny A, Hamel E. Muscarinic, but not nicotinic acetylcholine receptors mediate nitric oxid dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cerebr Blood Flow Metab. 2000;20;298–305. doi:10.1097/00004647-200002000-00011
  • Katusic ZS, Austin SA. Endothelial nitric oxide: protector of a healthy mind. Eur Heart J. 2014;35:888–894. doi:10.1093/eurheartj/eht54424357508
  • Joutel A. The Notch3-ECD cascade hypothesis of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy disease. Neurol Clin Neurosci. 2015;3:1–6. doi:10.1111/ncn3.2015.3.issue-1
  • Ridder DA, Wenzel J, Muller K, et al. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. J Exp Med. 2015;212:1529–1549. doi:10.1084/jem.2015016526347470
  • Román GC. Brain hypoperfusion: a critical factor in vascular dementia. Neurol Res. 2004; 26:454–458. doi:10.1179/01616410422501768615265263
  • Zhan SS, Beyreuther K, Schmitt HP. Synaptophysin immunoreactivity of the cortical neuropil in vascular dementia of Binswanger type compared with the dementia of Alzheimer type and non-demented controls. Dementia. 1994;5:79–87.8038870
  • Ishunina TA, Kamphorst W, Swaab DF. Metabolic alterations in the hypothalamus and basal forebrain in vascular dementia. J Neuropathol Exp Neurol. 2004;63(12):1243–1254. doi:10.1093/jnen/63.12.124315624761
  • Iadecola C, Yang G, Ebner TJ, Chen G. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J Neurophysiol. 1997;78(2):651–659. doi:10.1152/jn.1997.78.2.6519307102
  • Cummings JL. Frontal-subcortical circuits and human behavior. Arch Neurol. 1993;50:873–880. doi:10.1001/archneur.1993.005400800760208352676
  • Ahtiluoto S, Polvikoski T, Peltonen M, et al. Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology. 2010;75:1195–1202. doi:10.1212/WNL.0b013e3181ed735b20739645
  • Poggesi A, Pasi M, Pascini F, Pantoni L, Inzitari D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review. J Cerebr Blood Flow Metab. 2015. doi: 10.1038/jcbfm.2015.116
  • Gorelick PB, Scuteri A, Black SE et al. Vascular contributions to cognitive impairment and dementia a statement for healthcare professional from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–2713. doi:10.1161/STR.0b013e318229949621778438
  • Kivipelto M, Ngandu T, Laatikainen T, WInblad B, Soinen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 2006;5:735–741. doi:10.1016/S1474-4422(06)70537-316914401
  • Prins ND, Scheltens P. White matter hyper-intensities, cognitive impairment and dementia: an update, Nature Rev Neurol. 2015;11:157–165. doi:10.1038/nrneurol.2015.1025686760
  • Wallin A, Blennow K, Gottfires CG. Subcortical symptoms predominate in vascular dementia. Int J Ger Psych. 1991;6:137–146. doi:10.1002/gps.930060305
  • Moretti R, Cavressi M, Tomietto P. Gait and apathy as relevant symptoms of subcortical vascular dementia. Am J Alzh Dis Other Dem. 2015;30(4):390–399. Doi:10.1177/1533317514550329.
  • Fischer P, Gaterer G, Martere A, Simanyi M, Danielcyzk W. Course characteristics in the differentiation of dementia of the Alzheimer’s type and multi-infarct dementia. Acta Psych Scand 1990;81:551–553. doi:10.1111/j.1600-0447.1990.tb05497.x
  • Cummings JL.Vascular subcortical dementias: clinical aspects. Dementia 1994;5:177–180.8087175
  • Desmond D, Erkinjuntti T, Sano M, et al. The cognitive syndrome of vascular dementia: implications for clinical trials. Alzh Dis Ass Dis 1999;13:21–29.
  • Sachdev PS, Brodaty H, Valenzuela MJ, et al. the neuropsychological profile of vascular cognitive impairment in stroke and TIA paitents. Neurol. 2004;62(6):912–919.
  • Traykov L, Baudic S, Thibaudet MC, Rigaud AS, Samgghe A, Boller F. Neuropsychological deficit in early subcortical vascular dementia: comparison to AD. Demen Geriatr Cogn Dis. 2002;14:26–32. doi:10.1159/000058330
  • Wallin A, Milo S, Sjogren M, Pantoni L, Erkinjuntti T Classification and subtypes of vascular dementia. Int PSychoger. 2003;15:27–37. doi:10.1017/S1041610203008937
  • Moretti R, Torre P, Antonello RM, Cazzato G. Behavioral alterations and vascular dementia. Neurologist. 2006;12(81):43–47. doi:10.1097/01.nrl.0000186806.54314.e816547446
  • Moretti R, Signori R. Neural correlates for apathy: frontal-prefrontal and parietal cortical-subcortical circuits. Front Aging Neurosci. 2016;9:8:289. doi: 10.3389/fnagi.2106.00289.
  • Ishii N, Nashihara Y, Imamura T. Why do frontal lobe symptoms predominate in vascular dementia with lacunes? Neurology. 1986; 36:340–345. doi:10.1212/wnl.36.3.3403951700
  • Levine B, Stuss DT, Milberg WP. Effects of aging on conditioned associative learning: process analysis and comparison with focal frontal lesions. Neupsychol. 1997;11:367–381.
  • Jorm AF, Jolley D. The incidence of dementia: a meta-analysis. Neurology. 1998:51(3):728–733.
  • Meyer JS, Xu G, Thornby J, Chowdhury MH, Quach M. Is mild cognitive impairment prodromal for vascular dementia like AD? Stroke. 2002;33(8):1981-1985.
  • Grau-Olivares M, Arboix A. Mild cognitive impairment in stroke patients with ischemic cerebral small vessel disease: a forerunner of vascular dementia. Exp Rev Neurotherpae. 2009;9:1201–1217.
  • Sabri O, Hellwig D, Schreckenberger M, et al. Correlation of neuropsychological, morphological and functional findings in cerebral microangiopathy. J Nucl Med 1998;39:147–154.9443754
  • Prins ND, van Dijk EJ, Den Heijer T, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 2005; 128: 20134–22041.
  • Grau-Olivares M, Arboix A, Bartres-Faz D, Junque C. Neuropsychological abnormalities associated with lacunar infarction. J Neurol Sci. 2007;257:160–165.17316693
  • Jokinen H, Kalska H, Ylikoski R, et al. Longitudinal cognitive decline in subcortical ischemic vascular disease-the LADIS study. Cerebrovasc Dis. 2009;27:384–391.19276621
  • Baker JG, Williams AJ, Ionita CC, Lee-Kwen P, Ching M, Miletich RS. Cerebral small-vessel disease: cognition, mood, daily functioning, and imaging finding from a small pilot sample. Dem Ger Cogn Disord. 2012;2:169–179. doi: 10.1159/0000333482.
  • Nitkunan A, Lanfranconi S, Charlton RA, Barrick TR, Markus HS. Brain atrophy and cerebral small vessel disease. A prospective follow-up study. Stroke. 2011; 42:133–138.21148440
  • Kim HJ, Ye BS, Yoon CW, et al. Cortical thickness and hippocampal shape in pure vascular mild cognitive impairment and dementia of subcortical type. Eur J Neur. 2014;21:744–751. doi: 10.111/ene.123769.
  • Shi Y, Tirpletton MJ, Makin SD, et al. Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J Cerebr Blood Flow Metab. 201636(10):1653-1667. doi:10.1177/0271678X166662891.
  • Maillard P, Fletcher E, Lockhart SN, et al. White matter hyperintensities and their penumbra lie along a continuum of injury in the aging brain. Stroke. 2014;45:1721–1726.24781079
  • Maniega SM, Valdes Hernandez MC, Clayden JD, et al. White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiol Aging. 2015;36:909–918.25457555
  • Madden DJ, Bennett IJ, Burzynska A, et al. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta. 2012:1822:386–400.21871957
  • Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra111.
  • O’Brien JT, Thomas A. Vascular dementia. Lancet. 2015;386:1698–1706.26595643
  • O’Brien JT, Thomas A. Non-Alzheimer’s dementia 3 vascular dementia. Lancet. 2015;386:1698–1706. doi:10.1016/S0140-6736(15)00463-826595643