245
Views
7
CrossRef citations to date
0
Altmetric
Original Research

The Effect of CYP2C9 Genotype Variants in Type 2 Diabetes on the Pharmacological Effectiveness of Sulfonylureas, Diabetic Retinopathy, and Nephropathy

, , &
Pages 241-248 | Published online: 18 Jun 2020

References

  • Federation ID, editor. IDF Diabetes Atlas Update Poster. Brussels, Belgium: International Diabetes Federation; 20152015.
  • Bressler R, Johnson DG. Pharmacological regulation of blood glucose levels in non—insulin-department diabetes mellitus. Arch Intern Med. 1997;157(8):836–848. doi:10.1001/archinte.1997.00440290014001
  • Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP IV. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995;268(5209):423. doi:10.1126/science.7716547
  • Tessier D, Dawson K, Tetrault J, Bravo G, Meneilly G. Glibenclamide vs gliclazide in type 2 diabetes of the elderly. Diabet Med. 1994;11(10):974–980. doi:10.1111/j.1464-5491.1994.tb00256.x
  • Holstein A, Plaschke A, Egberts EH. Lower incidence of severe hypoglycemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide. Diabetes Metab Res Rev. 2001;17(6):467–473. doi:10.1002/dmrr.235
  • Gangji AS, Cukierman T, Gerstein HC, Goldsmith CH, Clase CM. A systematic review and meta-analysis of hypoglycemia and cardiovascular events. Diabetes Care. 2007;30(2):389–394. doi:10.2337/dc06-1789
  • Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenet Genomics. 2002;12(3):251–263. doi:10.1097/00008571-200204000-00010
  • Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenet Genomics. 2000;10(2):95–104. doi:10.1097/00008571-200003000-00001
  • Sullivan-Klose TH, Ghanayem BI, Bell DA, et al. The role of the CFP2C9-Leu 359 allelic variant in the tolbutamide polymorphism. Pharmacogenet Genomics. 1996;6(4):341–349. doi:10.1097/00008571-199608000-00007
  • Inoue K, Yamazaki H, Imiya K, Akasaka S, Guengerich FP, Shimada T. Relationship between CYP2C9 and 2C19 genotypes and tolbutamide methyl hydroxylation and S-mephenytoin 4ʹ-hydroxylation activities in livers of Japanese and Caucasian populations. Pharmacogenet Genomics. 1997;7(2):103–113. doi:10.1097/00008571-199704000-00003
  • Zhou K, Donelly L, Burch L, et al. Loss–off-functionCYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a go-DARTS study. Clin Pharmacol Ther. 2010;87(1):52–56. doi:10.1038/clpt.2009.176
  • Kirchheiner J, Bauer S, Meineke I, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenet Genomics. 2002;12(2):101–109. doi:10.1097/00008571-200203000-00004
  • Shon J-H, Yoon Y-R, Kim K-A, et al. Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. Pharmacogenet Genomics. 2002;12(2):111–119. doi:10.1097/00008571-200203000-00005
  • Suzuki K, Yanagawa T, Shibasaki T, Kaniwa N, Hasegawa R, Tohkin M. Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with type 2 diabetes. Diabetes Res Clin Pract. 2006;72(2):148–154. doi:10.1016/j.diabres.2005.09.019
  • Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivistö KT. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther. 2002;72(3):326–332. doi:10.1067/mcp.2002.127495
  • American Academy of Ophthalmology. Preferred Practice Pattern: Diabetic Retinopathy. September 20; 2014; San Francisco, Calif: American Academy of Ophthalmology.
  • Capozzi ME, McCollum GW, Penn JS. The role of cytochrome P450 epoxygenases in retinal angiogenesis cytochrome P450 epoxygenases. Invest Ophthalmol Vis Sci. 2014;55(7):4253–4260. doi:10.1167/iovs.14-14216
  • Suzuki S, Oguro A, Osada-Oka M, Funae Y, Imaoka S. Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. J Pharmacol Sci. 2008;108(1):79–88. doi:10.1254/jphs.08122FP
  • Shao H, Ren X, Liu N, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics and pharmacodynamics of gliclazide in healthy Chinese Han volunteers. J Clin Pharm Ther. 2010;35(3):351–360. doi:10.1111/j.1365-2710.2009.01134.x
  • Rajendran S, Philip B, Gopinath R, Suresh B. RP-HPLC method for the estimation of glibenclamide in human serum. Indian J Pharm Sci. 2007;69(6):796. doi:10.4103/0250-474X.39436
  • Venkatesh P, Harisudhan T, Choudhury H, Mullangi R, Srinivas NR. Simultaneous estimation of six anti‐diabetic drugs—glibenclamide, gliclazide, glipizide, pioglitazone, repaglinide and rosiglitazone: development of a novel HPLC method for use in the analysis of pharmaceutical formulations and its application to human plasma assay. Biomed Chromatogr. 2006;20(10):1043–1048. doi:10.1002/bmc.635
  • Seng KC, Gin GG, Sangkar JV, Phipps ME. Frequency of cytochrome P450 2C9 (CYP2C9) alleles in three ethnic groups in Malaysia. Asia Pac J Mol Biol Biotechnol. 2003;11(2):83–91.
  • Levey AS, Coresh J, Balk E, et al. National kidney foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139(2):137–147. doi:10.7326/0003-4819-139-2-200307150-00013
  • Ataby OA, Tabari RG, Mansourian AR, Samai NM, Marjani A. Genetic polymorphism of cytochrome P450 2C9 (CYP2C9) in two ethnic groups in Iran. Am J Biomed Sci. 2013;5(3):177–187. doi:10.5099/aj130300177
  • Wang S-L, Huang J-D, Lai M-D, Tsai -J-J. Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenet Genomics. 1995;5(1):37–42. doi:10.1097/00008571-199502000-00004
  • Stubbins MJ, Harries LW, Smith G, Tarbit MH, Wolf CR. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenet Genomics. 1996;6(5):429–439. doi:10.1097/00008571-199610000-00007
  • Nasu K, Kubot T, Ishizaki T. Genetic analysis of CYP2C9 polymorphism in a Japanese population. Pharmacogenet Genomics. 1997;7(5):405–409. doi:10.1097/00008571-199710000-00011
  • Ackermann E, Cascorbi I, Sachse C, Brockmoller J, Mrozikiewiza P, Roots I. Frequencies and the allelic linkage of CYP2C9 mutations in a German population and the detection of a C/T mutation in intron 2. Eur J Clin Pharmacol. 1997;52:A71.
  • Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S. Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit. 1998;20(3):243–247. doi:10.1097/00007691-199806000-00001
  • Yasar Ü, Eliasson E, Dahl M-L, Johansson I, Ingelman-Sundberg M, Sjöqvist F. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun. 1999;254(3):628–631. doi:10.1006/bbrc.1998.9992
  • Brockmöller J, Bauer S, Sachse C, et al. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol. 1999;48(3):409–415. doi:10.1046/j.1365-2125.1999.00012.x
  • Gaedigk A. Interethnic differences of drug-metabolizing enzymes. Int J Clin Pharmacol Ther. 2000;38(2):61–68. doi:10.5414/CPP38061
  • Kim J, Gaedigk A, Leeder J, Kearns G, Bertino J. Cyp2c9 mutant alleles frequencies in a rural us Caucasian population. Clin Pharmacol Ther. 2000;67(2):120.
  • Choo E, Dresser G, Stein C, et al. Identification of a new CYP2C9 variant in African-Americans. Clin Pharmacol Ther. 2000;67(2):169.
  • Jittikoon J, Mahasirimongkol S, Charoenyingwattana A, et al. Comparison of genetic variation in drug ADME-related genes in Thais with Caucasian, African and Asian HapMap populations. J Hum Genet. 2016;61(2):119–127. doi:10.1038/jhg.2015.115
  • Villegas-Torres B, Sánchez-Girón F, Jaramillo-Villafuerte K, Soberón X, Gonzalez-Covarrubias V. Genotype frequencies of VKORC1 and CYP2C9 in native and Mestizo populations from Mexico, potential impact for coumarin dosing. Gene. 2015;558(2):235–240. doi:10.1016/j.gene.2014.12.068
  • Céspedes-Garro C, Fricke-Galindo I, Naranjo MEG, et al. Worldwide interethnic variability and geographical distribution of CYP2C9 genotypes and phenotypes. Expert Opin Drug Metab Toxicol. 2015;11(12):1893–1905. doi:10.1517/17425255.2015.1111871
  • Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353(9154):717–719. doi:10.1016/S0140-6736(98)04474-2
  • Gaedigk A, Casley WL, Tyndale RF, Sellers EM, Jurima-Romet M, Leeder JS. Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations. Can J Physiol Pharmacol. 2001;79(10):841–847. doi:10.1139/y01-065
  • Holstein A, Plaschke A, Ptak M, et al. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycemia on medication with sulphonylurea hypoglycaemic agents. Br J Clin Pharmacol. 2005;60(1):103–106. doi:10.1111/j.1365-2125.2005.02379.x
  • Surendiran A, Pradhan S, Agrawal A, et al. Influence of CYP2C9 gene polymorphisms on response to glibenclamide in type 2 diabetes mellitus patients. Eur J Clin Pharmacol. 2011;67(8):797–801. doi:10.1007/s00228-011-1013-8
  • Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmöller J. Effect of genetic polymorphisms in cytochrome P450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs. Clin Pharmacokinet. 2005;44(12):1209–1225. doi:10.2165/00003088-200544120-00002
  • Kim YM, Yoo SH, Kang RY, et al. Identifying drugs needing pharmacogenetic monitoring in a Korean hospital. Am J Health Syst Pharm. 2007;64(2):166–175. doi:10.2146/ajhp050490
  • Mosikian A, Dolgorukova A, Zalevskaya A. Possible approaches to CYP2C9-guided prescription of sulfonylureas in Russia. Pharmacogenomics. 2016;17(18):2115–2126. doi:10.2217/pgs-2016-0121
  • Tacconelli S, Patrignani P. Inside epoxyeicosatrienoic acids and cardiovascular disease. Front Pharmacol. 2014;5:239. doi:10.3389/fphar.2014.00239