90
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Clinical Significance of Factor XIII Activity and Monocyte-Derived Microparticles in Cancer Patients

, &
Pages 103-110 | Published online: 01 Apr 2020

References

  • Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104–1114. doi:10.1161/CIRCULATIONAHA.115.020406
  • Bonnie KY. Cardio-oncology. In: Braunwald E, editor. Heart Disease. 11thed. Philadelphia: Saunders; 2018:1641–1650.
  • Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management-part 2. J Am Coll Cardiol. 2017;70(20):2552–2565. doi:10.1016/j.jacc.2017.09.1095
  • Okwuosa TM, Prabhu N, Patel H, et al. The cardiologist and the cancer patient: challenges to cardio-oncology (or onco-cardiology) and call to action. J Am Coll Cardiol. 2018;72(2):228–232. doi:10.1016/j.jacc.2018.04.043
  • Edwards BK, Noone AM, Mariotto AB, et al. Annual report to the nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer. 2014;120(9):1290–1314. doi:10.1002/cncr.28509
  • Lyman GH, Khorana AA, Falanga A, et al. American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol. 2007;25(34):5490–5505. doi:10.1200/JCO.2007.14.1283
  • Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 2007;5(3):632–634. doi:10.1111/j.1538-7836.2007.02374.x
  • Khorana AA. Venous thromboembolism and prognosis in cancer. Thromb Res. 2010;125(6):490–493. doi:10.1016/j.thromres.2009.12.023
  • Mukai M, Komori K, Oka T. Mechanism and management of cancer chemotherapy-induced atherosclerosis. J Atheroscler Thromb. 2018;25(10):994–1002. doi:10.5551/jat.RV17027
  • Muszbek L, Bereczky Z, Bagoly Z, et al. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev. 2011;91(3):931–972.
  • Ichinose A. Factor XIII is a key molecule at the intersection of coagulation and fibrinolysis as well as inflammation and infection control. Int J Hematol. 2012;95(4):362–370. doi:10.1007/s12185-012-1064-3
  • Smith KA, Pease RJ, Avery CA, et al. The activation peptide cleft exposed by thrombin cleavage of FXIII-A2 contains a recognition site for the fibrinogen α chain. Blood. 2013;121(11):2117–2126. doi:10.1182/blood-2012-07-446393
  • Fraser SR, Booth NA, Mutch NJ. The antifibrinolytic function of factor XIII is exclusively expressed through 2-antiplasmin cross-linking. Blood. 2011;117(23):6371–6374.
  • Mitchell JL, Lionikiene AS, Fraser SR, et al. Functional factor XIII-A is exposed on the stimulated platelet surface. Blood. 2014;124(26):3982–3990. doi:10.1182/blood-2014-06-583070
  • Schroeder V, Kohler HP. New developments in the area of factor XIII. J Thromb Haemost. 2013;11(2):234–244. doi:10.1111/jth.12074
  • Tahlan A, Ahluwalia J. Factor XIII: congenital deficiency factor XIII, acquired deficiency, factor XIII A-subunit, and factor XIII B-subunit. Arch Pathol Lab Med. 2014;138(2):278–281. doi:10.5858/arpa.2012-0639-RS
  • Shi DY, Wang SJ. Advances of coagulation factor XIII. Chin Med J. 2017;130(2):219–223. doi:10.4103/0366-6999.198007
  • Kreutz RP, Schmeisser G, Schaffter A, et al. Prediction of ischemic events after percutaneous coronary intervention: thrombelastography profiles and factor XIIIa activity. TH Open. 2018;2(2):e173–181. doi:10.1055/s-0038-1645876
  • Gonçalves E. Lopes da Silva R, Varandas J, Diniz MJ. Acute promyelocytic leukaemia associated factor XIII deficiency presenting as retro-bulbar haematoma. Thromb Res. 2012;129(6):810–811. doi:10.1016/j.thromres.2012.03.008
  • Lee SH, Suh IB, Lee EJ, et al. Relationships of coagulation factor XIII activity with cell-type and stage of non-small cell lung cancer. Yonsei Med J. 2013;54(6):1394–1399. doi:10.3349/ymj.2013.54.6.1394
  • Omoto S, Nomura S, Shouzu A, et al. Detection of monocyte-derived microparticles in patients with type II diabetes mellitus. Diabetologia. 2002;45(4):550–555. doi:10.1007/s00125-001-0772-7
  • Matsumoto N, Nomura S, Kamihata H, et al. Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb Haemost. 2004;91(1):146–154. doi:10.1160/TH03-04-0247
  • Nomura S, Shouzu A, Omoto S, et al. Effect of valsartan on monocyte/endothelial cell activation markers and adiponectin in hypertensive patients with type 2 diabetes mellitus. Thromb Res. 2006;117(4):385–392. doi:10.1016/j.thromres.2005.04.008
  • Colotta F, Borre A, Wang JM, et al. Expression of monocyte chemotactic cytokine by human mononuclear phagocytes. J Immunol. 1992;148(3):760–765.
  • Fries JWU, Williams AJ, Atkins RC, et al. Expression of VCAM-1 and E-selectin an in vivo model of endothelial activation. Am J Pathol. 1993;143(3):725–737.
  • Jsffe ES. Introduction and over view of the classification of lymphoid neoplasmas. In: Swerdlow SH, editor. WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC; 2017:pp190–198.
  • Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–3068. doi:10.1200/JCO.2013.54.8800
  • Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–3420. doi:10.1200/JCO.2005.04.242
  • Rami-Porta R, Bolejack V, Giroux DJ, et al. The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2014;9(11):1618–1624. doi:10.1097/JTO.0000000000000334
  • Fickenscher K, Aab A, Stuber W. A photometric assay for blood coagulation factor XIII. Thromb Haemost. 1991;65(5):535–540. doi:10.1055/s-0038-1648185
  • Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–548. doi:10.1016/S1470-2045(14)70442-5
  • Varki A. Trousseau’s syndrome: multiple definition and multiple mechanisms. Blood. 2007;110(6):1723–1729. doi:10.1182/blood-2006-10-053736
  • Ikushima S, Ono R, Fukuda K, et al. Trousseau’s syndrome: cancer-associated thrombosis. Jpn J Clin Oncol. 2016;46(3):204–208. doi:10.1093/jjco/hyv165
  • Zöller B, Melander O, Svensson P, Engström G. Red cell distribution width and risk for venous thromboembolism: a population-based cohort study. Thromb Res. 2014;133(3):334–339. doi:10.1016/j.thromres.2013.12.013
  • Riedl J, Kaider A, Reitter EM, et al. Association of mean platelet volume with risk of venous thromboembolism and mortality in patients with cancer. Results from the Vienna Cancer and Thrombosis Study (CATS). Thromb Haemost. 2014;111(4):670–678. doi:10.1160/TH13-07-0603
  • Díaz JM, Boietti BR, Vazquez FJ, et al. Mean platelet volume as a prognostic factor for venous thromboembolic disease. Rev Med Chil. 2019;147(2):145–152. doi:10.4067/s0034-98872019000200145
  • Inagaki N, Kibata K, Tamaki T, Shimizu T, Nomura S. Prognostic impact of the mean platelet volume/platelet count ratio in terms of survival in advanced non-small cell lung cancer. Lung Cancer. 2015;83(1):97–101. doi:10.1016/j.lungcan.2013.08.020
  • Cui CJ, Wang GJ, Yang S, Huang SK, Qiao R, Cui W. Tissue factor-bearing MPs and the risk of venous thrombosis in cancer patients: a meta-analysis. Sci Rep. 2018;8(1):1675. doi:10.1038/s41598-018-19889-8
  • Tesselaar ME, Romijin FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost. 2007;5(3):520–527. doi:10.1111/j.1538-7836.2007.02369.x
  • Zwicker JI, Liebman HA, Neuberg D, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830–6840. doi:10.1158/1078-0432.CCR-09-0371
  • Manly DA, Wang J, Glover SL, et al. Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thromb Res. 2010;125(6):511–512. doi:10.1016/j.thromres.2009.09.019
  • Campello E, Spiezial L, Radu CM, et al. Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism. Thromb Res. 2011;127(5):473–477. doi:10.1016/j.thromres.2011.01.002
  • Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood. 2013;122(11):1873–1880. doi:10.1182/blood-2013-04-460139
  • Falati S, Liu Q, Gross P, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med. 2003;197(11):1585–1598. doi:10.1084/jem.20021868
  • Del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106(5):1604–1611. doi:10.1182/blood-2004-03-1095
  • Pang W, Su J, Wand Y, et al. Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts. Cancer Sci. 2015;106(10):1362–1369. doi:10.1111/cas.12747
  • Geddings JE, Hisada Y, Boulaftali Y, et al. Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. J Thromb Haemost. 2016;14(1):153–166. doi:10.1111/jth.13181
  • Zarà M, Guidetti GF, Camera M, et al. Biology and role of extracellular vesicle (EVs) in the pathogenesis of thrombosis. Int J Mol Sci. 2019;20(11):E2840. doi:10.3390/ijms20112840
  • Bereczky Z, Balogh E, Katona E, Czuriga I, Edes I, Muszbek L. Elevated factor XIII level and the risk of myocardial infarction in women. Haematologica. 2007;92(2):287–288. doi:10.3324/haematol.10647
  • Ambroziak M, Kurylowicz A, Budaj A. Increased coagulation factor XIII activity but not genetic variants of coagulation factors is associated with myocardial infarction in young patients. J Thromb Thrombolys. 2019;48(3):519–527. doi:10.1007/s11239-019-01856-3
  • Owens AP 3rd, Mackman N. Microparticles in hemostasis and thrombosis. Cir Res. 2011;108(10):1284–1297. doi:10.1161/CIRCRESAHA.110.233056
  • Weiss R, Gröger M, Rauscher S, et al. Differential interaction of platelet-derived extracellular vesicles with leukocyte subsets in human whole blood. Sci Rep. 2018;8(1):6598. doi:10.1038/s41598-018-25047-x