1,705
Views
30
CrossRef citations to date
0
Altmetric
Review

Impact of High Altitude on Cardiovascular Health: Current Perspectives

, , , & ORCID Icon
Pages 317-335 | Published online: 08 Jun 2021

References

  • Cohen JE, Small C. Hypsographic demography: the distribution of human population by altitude. Proc Natl Acad Sci U S A. 1998;95(24):14009–14014. doi:10.1073/pnas.95.24.14009
  • Burtscher M, Bachmann O, Hatzl T, et al. Cardiopulmonary and metabolic responses in healthy elderly humans during a 1-week hiking programme at high altitude. Eur J Appl Physiol. 2001;84(5):379–386. doi:10.1007/s004210100393
  • Netzer N, Strohl K, Faulhaber M, Gatterer H, Burtscher M. Hypoxia-related altitude illnesses. J Travel Med. 2013;20(4):247–255. doi:10.1111/jtm.12017
  • Burtscher M, Gatterer H, Burtscher J, Mairbäurl H. Extreme terrestrial environments: life in thermal stress and hypoxia. a narrative review. Front Physiol. 2018;9:572. doi:10.3389/fphys.2018.00572
  • Moore LG. Human genetic adaptation to high altitude. High Alt Med Biol. 2001;2(2):257–279. doi:10.1089/152702901750265341
  • Winslow RM, Monge C. Hypoxia, Polycythemia, and Chronic Mountain Sickness. Johns Hopkins Univ.Press; 1987.
  • Hackett PH, Roach RC. High-altitude illness. New Engl J Med. 2001;345(2):107–114. doi:10.1056/NEJM200107123450206
  • Basnyat B, Murdoch DR. High-altitude illness. Lancet. 2003;361(9373):1967–1974. doi:10.1016/S0140-6736(03)13591-X
  • West JB. High living: lessons from extreme altitude. The 1984 J. Burns Amberson lecture. Am Rev Respir Dis. 1984;130(5):917–923. doi:10.1164/arrd.1984.130.5.917
  • Gazal S, Espinoza JR, Austerlitz F, et al. The genetic architecture of chronic mountain sickness in peru. Front Genet. 2019;10:690. doi:10.3389/fgene.2019.00690
  • West JB. Acclimatization and tolerance to extreme altitude. J Wilderness Med. 1993;4(1):17–26. doi:10.1580/0953-9859-4.1.17
  • Finch CE, Tanzi RE. Genetics of aging. Science. 1997;278(5337):407–411. doi:10.1126/science.278.5337.407
  • Nilsson PM. Genetic and environmental determinants of early vascular ageing (EVA). Curr Vasc Pharmacol. 2012;10(6):700–701. doi:10.2174/157016112803520981
  • Bunker A, Wildenhain J, Vandenbergh A, et al. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine. 2016;6:258–268. doi:10.1016/j.ebiom.2016.02.034
  • Crawford JE, Amaru R, Song J, et al. Natural selection on genes related to cardiovascular health in high-altitude adapted andeans. Am J Hum Genet. 2017;101(5):752–767. doi:10.1016/j.ajhg.2017.09.023
  • Burtscher M. Effects of living at higher altitudes on mortality: a narrative review. Aging Dis. 2014;5(4):274. doi:10.14336/AD.2014.0500274
  • Ezzati M, Horwitz ME, Thomas DS, et al. Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of US counties. J Epidemiol Community Health. 2012;66(7):e17–e17. doi:10.1136/jech.2010.112938
  • Faeh D, Gutzwiller F, Bopp M, Group SNCS. Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation. 2009;120(6):495. doi:10.1161/CIRCULATIONAHA.108.819250
  • Burtscher M, Ponchia A. The risk of cardiovascular events during leisure time activities at altitude. Prog Cardiovasc Dis. 2010;52(6):507–511. doi:10.1016/j.pcad.2010.02.008
  • Bärtsch P, Swenson ER. Clinical practice: acute high-altitude illnesses. N Engl J Med. 2013;368(24):2294–2302. doi:10.1056/NEJMcp1214870
  • Richalet J-P, Lhuissier FJ. Aging, tolerance to high altitude, and cardiorespiratory response to hypoxia. High Alt Med Biol. 2015;16(2):117–124. doi:10.1089/ham.2015.0030
  • Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol. 2018;315(2):H216–H232. doi:10.1152/ajpheart.00060.2018
  • Boscoe FP, Schymura MJ. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002. BMC Cancer. 2006;6:264. doi:10.1186/1471-2407-6-264
  • Burtscher M. Lower mortality rates in those living at moderate altitude. Aging (Albany NY). 2016;8(10):2603–2604. doi:10.18632/aging.101057
  • Thielke S, Slatore CG, Banks WA. Association between Alzheimer dementia mortality rate and altitude in California counties. JAMA Psychiatry. 2015;72(12):1253–1254. doi:10.1001/jamapsychiatry.2015.1852
  • Moore LG, Rohr AL, Maisenbach JK, Reeves JT. Emphysema mortality is increased in Colorado residents at high altitude. Am Rev Respir Dis. 1982;126(2):225–228.
  • Schobersberger W, Schmid P, Lechleitner M, et al. Austrian Moderate Altitude Study 2000 (AMAS 2000). The effects of moderate altitude (1700 m) on cardiovascular and metabolic variables in patients with metabolic syndrome. Eur J Appl Physiol. 2003;88(6):506–514. doi:10.1007/s00421-002-0736-8
  • West JB. Highest inhabitants in the world. Nature. 1986;324(6097):517. doi:10.1038/324517a0
  • Song C, Chongsuvivatwong V, Zhu Luo Bu O, Sang Zhuo Ma B, Sriplung H. Relationship between hypertension and geographic altitude: a cross-sectional survey among residents in Tibet. J Int Med Res. 2020;48(2):300060520903645. doi:10.1177/0300060520903645
  • Mingji C, Onakpoya IJ, Perera R, Ward AM, Heneghan CJ. Relationship between altitude and the prevalence of hypertension in Tibet: a systematic review. Heart. 2015;101(13):1054–1060. doi:10.1136/heartjnl-2014-307158
  • Aryal N, Weatherall M, Bhatta YK, Mann S. Blood pressure and hypertension in adults permanently living at high altitude: a systematic review and meta-analysis. High Alt Med Biol. 2016;17(3):185–193. doi:10.1089/ham.2015.0118
  • Beall CM. Tibetan and Andean patterns of adaptation to high-altitude hypoxia. Hum Biol. 2000;72(1):201–228.
  • Narvaez-Guerra O, Herrera-Enriquez K, Medina-Lezama J, Chirinos JA. Systemic hypertension at high altitude. Hypertension. 2018;72(3):567–578. doi:10.1161/HYPERTENSIONAHA.118.11140
  • Bilo G, Acone L, Anza-Ramírez C, et al. Office and ambulatory arterial hypertension in highlanders: HIGHCARE-ANDES Highlanders Study. Hypertension. 2020;76(6):1962–1970. doi:10.1161/HYPERTENSIONAHA.120.16010
  • Sherpa LY, Deji SH. Lipid profile and its association with risk factors for coronary heart disease in the highlanders of Lhasa, Tibet. High Alt Med Biol. 2011;12(1):57–63. doi:10.1089/ham.2010.1050
  • Deng B, Luo T, Huang Y, Shen T, Ma J. Prevalence and determinants of hyperlipidemia in moderate altitude areas of the Yunnan-Kweichow plateau in Southwestern China. High Alt Med Biol. 2012;13(1):13–21. doi:10.1089/ham.2011.1037
  • Lopez-Pascual A, Arévalo J, Martínez JA, González-Muniesa P. Inverse association between metabolic syndrome and altitude: a cross-sectional study in an adult population of ecuador. Front Endocrinol (Lausanne). 2018;9:658. doi:10.3389/fendo.2018.00658
  • Rühli FJ, Henneberg M, Schaer DJ, Imhof A, Schleiffenbaum B, Woitek U. Determinants of inter-individual cholesterol level variation in an unbiased young male sample. Swiss Med Wkly. 2008;138(19–20):286–291.
  • Woolcott OO, Castillo OA, Gutierrez C, Elashoff RM, Stefanovski D, Bergman RN. Inverse association between diabetes and altitude: a cross-sectional study in the adult population of the United States. Obesity (Silver Spring). 2014;22(9):2080–2090. doi:10.1002/oby.20800
  • Okumiya K, Sakamoto R, Ishimoto Y, et al. Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland. BMJ Open. 2016;6(2):e009728. doi:10.1136/bmjopen-2015-009728
  • Woolcott OO, Gutierrez C, Castillo OA, Elashoff RM, Stefanovski D, Bergman RN. Inverse association between altitude and obesity: a prevalence study among andean and low-altitude adult individuals of Peru. Obesity (Silver Spring). 2016;24(4):929–937. doi:10.1002/oby.21401
  • Leon-Velarde F, Maggiorini M, Reeves JT, et al. Consensus statement on chronic and subacute high altitude diseases. High Alt Med Bio. 2005;6:147–157. doi:10.1089/ham.2005.6.147
  • Villafuerte FC, Corante N. Chronic mountain sickness: clinical aspects, etiology, management, and treatment. High Alt Med Biol. 2016;17(2):61–69. doi:10.1089/ham.2016.0031
  • Virues-Ortega J, Hogan AM, Baya-Botti A, et al. Survival and mortality in older adults living at high altitude in Bolivia: a preliminary report. J Am Geriatr Soc. 2009;57(10):1955–1956. doi:10.1111/j.1532-5415.2009.02468.x
  • Burtscher M, Hefti U, Hefti-Pichler J. High-altitude illnesses: old stories and new insights into the pathophysiology, treatment and prevention. Sports Med Health Sci. doi:10.1016/j.smhs.2021.04.001
  • Mairer K, Wille M, Burtscher M. The prevalence of and risk factors for acute mountain sickness in the Eastern and Western Alps. High Alt Med Biol. 2010;11(4):343–348. doi:10.1089/ham.2010.1039
  • Li X, Tao F, You H, Pei T, Gao Y. Factors associated with acute mountain sickness in young Chinese men on entering highland areas. Asia Pac J Public Health. 2015;27(2):NP116–31. doi:10.1177/1010539511427956
  • Richalet JP, Larmignat P, Poitrine E, Letournel M, Canouï-Poitrine F. Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am J Respir Crit Care Med. 2012;185(2):192–198. doi:10.1164/rccm.201108-1396OC
  • Wu TY, Ding SQ, Liu JL, et al. Who should not go high: chronic disease and work at altitude during construction of the Qinghai-Tibet railroad. High Alt Med Biol. 2007;8(2):88–107. doi:10.1089/ham.2007.1015
  • Jayaswal R, Sivadas P, Mishra SS. Health and performance of military personnel in cold climatic environment of the western Himalayas. Med J Armed Forces India. 2001;57(4):322–325. doi:10.1016/S0377-1237(01)80014-9
  • Marshall JM. Chemoreceptors and cardiovascular control in acute and chronic systemic hypoxia. Braz J Med Biol Res. 1998;31(7):863–888. doi:10.1590/s0100-879x1998000700002
  • Burtscher M, Faulhaber M, Flatz M, Likar R, Nachbauer W. Effects of short-term acclimatization to altitude (3200 m) on aerobic and anaerobic exercise performance. Int J Sports Med. 2006;27(8):629–635. doi:10.1055/s-2005-872823
  • Bärtsch P, Gibbs JS. Effect of altitude on the heart and the lungs. Circulation. 2007;116(19):2191–2202. doi:10.1161/CIRCULATIONAHA.106.650796
  • Levine BD. Going high with heart disease: the effect of high altitude exposure in older individuals and patients with coronary artery disease. High Alt Med Biol. 2015;16(2):89–96. doi:10.1089/ham.2015.0043
  • Naeije R. Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis. 2010;52(6):456–466. doi:10.1016/j.pcad.2010.03.004
  • Lenfant C, Sullivan K. Adaptation to high altitude. N Engl J Med. 1971;284(23):1298–1309. doi:10.1056/NEJM197106102842305
  • Zouboules SM, Lafave HC, O’Halloran KD, et al. Renal reactivity: acid-base compensation during incremental ascent to high altitude. J Physiol. 2018;596(24):6191–6203. doi:10.1113/JP276973
  • Swenson ER. Carbonic anhydrase inhibitors and high altitude illnesses. Subcell Biochem. 2014;75:361–386. doi:10.1007/978-94-007-7359-2_18
  • Burtscher M, Philadelphy M, Gatterer H, et al. Physiological responses in humans acutely exposed to high altitude (3480 m): minute ventilation and oxygenation are predictive for the development of acute mountain sickness. High Alt Med Biol. 2019;20:192–197. doi:10.1089/ham.2018.0143
  • Levine BD, Zuckerman JH, deFilippi CR. Effect of high-altitude exposure in the elderly: the Tenth Mountain Division study. Circulation. 1997;96(4):1224–1232. doi:10.1161/01.cir.96.4.1224
  • Parati G, Bilo G, Faini A, et al. Changes in 24 h ambulatory blood pressure and effects of angiotensin II receptor blockade during acute and prolonged high-altitude exposure: a randomized clinical trial. Eur Heart J. 2014;35(44):3113–3122. doi:10.1093/eurheartj/ehu275
  • Lhuissier FJ, Canouï‐Poitrine F, Richalet JP. Ageing and cardiorespiratory response to hypoxia. J Physiol. 2012;590(21):5461–5474. doi:10.1113/jphysiol.2012.238527
  • Horstman D, Weiskopf R, Jackson RE. Work capacity during 3-wk sojourn at 4300 m: effects of relative polycythemia. J Appl Physiol Respir Environ Exerc Physiol. 1980;49(2):311–318. doi:10.1152/jappl.1980.49.2.311
  • Burtscher M, Niedermeier M, Burtscher J, Pesta D, Suchy J, Strasser B. Preparation for endurance competitions at altitude: physiological, psychological, dietary and coaching aspects. a narrative review. Front Physiol. 2018;9:1504. doi:10.3389/fphys.2018.01504
  • Burtscher M, Philadelphy M, Burtscher J, Likar R. Sex-specific differences in blood pressure responses following acute high-altitude exposure. J Travel Med. 2021. doi:10.1093/jtm/taab035
  • Cymerman A, Reeves JT, Sutton JR, et al. Operation Everest II: maximal oxygen uptake at extreme altitude. J Appl Physiol (1985). 1989;66(5):2446–2453. doi:10.1152/jappl.1989.66.5.2446
  • Burtscher M, Nachbauer W, Baumgartl P, Philadelphy M. Benefits of training at moderate altitude versus sea level training in amateur runners. Eur J Appl Physiol Occup Physiol. 1996;74(6):558–563. doi:10.1007/bf02376773
  • Parati G, Agostoni P, Basnyat B, et al. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: a joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur Heart J. 2018;39(17):1546–1554. doi:10.1093/eurheartj/ehx720
  • Rimoldi SF, Sartori C, Seiler C, et al. High-altitude exposure in patients with cardiovascular disease: risk assessment and practical recommendations. Prog Cardiovasc Dis. 2010;52(6):512–524. doi:10.1016/j.pcad.2010.03.005
  • Higgins JP, Tuttle T, Higgins JA. Altitude and the heart: is going high safe for your cardiac patient? Am Heart J. 2010;159(1):25–32. doi:10.1016/j.ahj.2009.10.028
  • Faulhaber M, Flatz M, Gatterer H, Schobersberger W, Burtscher M. Prevalence of cardiovascular diseases among alpine skiers and hikers in the Austrian Alps. High Alt Med Biol. 2007;8(3):245–252. doi:10.1089/ham.2007.1005
  • Alexander JK. Coronary heart disease at altitude. Tex Heart Inst J. 1994;21(4):261–266.
  • Erdmann J, Sun KT, Masar P, Niederhauser H. Effects of exposure to altitude on men with coronary artery disease and impaired left ventricular function. Am J Cardiol. 1998;81(3):266–270. doi:10.1016/s0002-9149(97)00901-6
  • Hackett PH, Creagh CE, Grover RF, et al. High-altitude pulmonary edema in persons without the right pulmonary artery. N Engl J Med. 1980;302(19):1070–1073. doi:10.1056/NEJM198005083021907
  • Richalet JP, Chenivesse C, Larmignat P, Meille L. High altitude pulmonary edema, down syndrome, and obstructive sleep apneas. High Alt Med Biol. 2008;9(2):179–181. doi:10.1089/ham.2007.1062
  • Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U. Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet. 1999;353(9171):2205–2207. doi:10.1016/S0140-6736(98)08352-4
  • Lichtblau M, Saxer S, Latshang TD, et al. Altitude travel in patients with pulmonary hypertension: randomized pilot-trial evaluating nocturnal oxygen therapy. Front Med (Lausanne). 2020;7:502. doi:10.3389/fmed.2020.00502
  • Allemann Y, Hutter D, Lipp E, et al. Patent foramen ovale and high-altitude pulmonary edema. JAMA. 2006;296(24):2954–2958. doi:10.1001/jama.296.24.2954
  • Scherrer U, Allemann Y, Jayet PY, Rexhaj E, Sartori C. High altitude, a natural research laboratory for the study of cardiovascular physiology and pathophysiology. Prog Cardiovasc Dis. 2010;52(6):451–455. doi:10.1016/j.pcad.2010.02.002
  • Harinck E, Hutter PA, Hoorntje TM, et al. Air travel and adults with cyanotic congenital heart disease. Circulation. 1996;93(2):272–276. doi:10.1161/01.cir.93.2.272
  • Alexander JK. Coronary problems associated with altitude and air travel. Cardiol Clin. 1995;13(2):271–278.
  • Donegani E, Hillebrandt D, Windsor J, et al. Pre-existing cardiovascular conditions and high altitude travel. Consensus statement of the Medical Commission of the Union Internationale des Associations d’Alpinisme (UIAA MedCom) Travel Medicine and Infectious Disease. Travel Med Infect Dis. 2014;12(3):237–252. doi:10.1016/j.tmaid.2014.02.004
  • Schmid JP, Noveanu M, Gaillet R, Hellige G, Wahl A, Saner H. Safety and exercise tolerance of acute high altitude exposure (3454 m) among patients with coronary artery disease. Heart. 2006;92(7):921–925. doi:10.1136/hrt.2005.072520
  • Agostoni P, Cattadori G, Guazzi M, et al. Effects of simulated altitude-induced hypoxia on exercise capacity in patients with chronic heart failure. Am J Med. 2000;109(6):450–455. doi:10.1016/s0002-9343(00)00532-5
  • Agostoni P. Considerations on safety and treatment of patients with chronic heart failure at high altitude. High Alt Med Biol. 2013;14(2):96–100. doi:10.1089/ham.2012.1117
  • Savonitto S, Cardellino G, Doveri G, et al. Effects of acute exposure to altitude (3460 m) on blood pressure response to dynamic and isometric exercise in men with systemic hypertension. Am J Cardiol. 1992;70(18):1493–1497. doi:10.1016/0002-9149(92)90308-l
  • Winkler L, Lhuissier FJ, Richalet JP. Systemic blood pressure at exercise in hypoxia in hypertensive and normotensive patients. J Hypertens. 2017;35(12):2402–2410. doi:10.1097/HJH.0000000000001479
  • Lyamina NP, Lyamina SV, Senchiknin VN, Mallet RT, Downey HF, Manukhina EB. Normobaric hypoxia conditioning reduces blood pressure and normalizes nitric oxide synthesis in patients with arterial hypertension. J Hypertens. 2011;29(11):2265–2272. doi:10.1097/HJH.0b013e32834b5846
  • Keyes LE, Sallade TD, Duke C, et al. Blood pressure and altitude: an observational cohort study of hypertensive and nonhypertensive himalayan trekkers in Nepal. High Alt Med Biol. 2017;18(3):267–277. doi:10.1089/ham.2017.0001
  • Kivipelto M, Ngandu T, Fratiglioni L, et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol. 2005;62(10):1556–1560. doi:10.1001/archneur.62.10.1556
  • Broce IJ, Tan CH, Fan CC, et al. Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer’s disease. Acta Neuropathol. 2019;137(2):209–226. doi:10.1007/s00401-018-1928-6
  • Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology. 2005;64(2):277–281. doi:10.1212/01.WNL.0000149519.47454.F2
  • Rabin JS, Schultz AP, Hedden T, et al. Interactive associations of vascular risk and β-amyloid burden with cognitive decline in clinically normal elderly individuals: findings from the Harvard Aging Brain Study. JAMA Neurol. 2018;75(9):1124–1131. doi:10.1001/jamaneurol.2018.1123
  • Fiuza-Luces C, Santos-Lozano A, Joyner M, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018;15(12):731–743. doi:10.1038/s41569-018-0065-1
  • Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol. 2017;312(1):H1–h20. doi:10.1152/ajpheart.00581.2016
  • Asmaro D, Mayall J, Ferguson S. Cognition at altitude: impairment in executive and memory processes under hypoxic conditions. Aviat Space Environ Med. 2013;84(11):1159–1165. doi:10.3357/asem.3661.2013
  • Bonnon M, Noël-Jorand MC, Therme P. Psychological changes during altitude hypoxia. Aviat Space Environ Med. 1995;66(4):330–335.
  • Griva K, Stygall J, Wilson MH, et al. Caudwell Xtreme Everest: a prospective study of the effects of environmental hypoxia on cognitive functioning. PLoS One. 2017;12(3):e0174277. doi:10.1371/journal.pone.0174277
  • Nation DA, Bondi MW, Gayles E, Delis DC. Mechanisms of memory dysfunction during high altitude hypoxia training in military aircrew. J Int Neuropsychol Soc. 2017;23(1):1–10. doi:10.1017/s1355617716000965
  • Pagani M, Ravagnan G, Salmaso D. Effect of acclimatisation to altitude on learning. Cortex. 1998;34(2):243–251. doi:10.1016/S0010-9452(08)70751-2
  • Pelamatti G, Pascotto M, Semenza C. Verbal free recall in high altitude: proper names vs common names. Cortex. 2003;39(1):97–103. doi:10.1016/S0010-9452(08)70077-7
  • Nelson M. Psychological testing at high altitudes. Aviat Space Environ Med. 1982;53:122–126.
  • de Aquino Lemos V, Antunes HK, Dos Santos RV, Lira FS, Tufik S, de Mello MT. High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology. 2012;49(9):1298–1306. doi:10.1111/j.1469-8986.2012.01411.x
  • Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009;8(2):175–191. doi:10.1016/S1474-4422(09)70014-6
  • Hur T. Parkinsonism after climbing high amplitude mountain: a case report. J Neurol Sci. 2015;357:e270. doi:10.1016/j.jns.2015.08.948
  • Swaminath PV, Ragothaman M, Muthane UB, Udupa SA, Rao SL, Govindappa SS. Parkinsonism and personality changes following an acute hypoxic insult during mountaineering. Movement Disorders. 2006;21(8):1296–1297. doi:10.1002/mds.20941
  • Park K, Yang KI. Delayed parkinsonism following high mountain climbing: a case report. Neurology Asia. 2013;18(1):99–101.
  • Litch JA, Bishop RA. High-altitude global amnesia. Wilderness Environ Med. 2000;11(1):25–28. doi:10.1580/1080-6032(2000)011[0025:haga]2.3.co;2
  • Imray CH, Myers SD, Pattinson KT, et al. Effect of exercise on cerebral perfusion in humans at high altitude. J Appl Physiol (1985). 2005;99(2):699–706. doi:10.1152/japplphysiol.00973.2004
  • Sanborn MR, Edsell ME, Kim MN, et al. Cerebral hemodynamics at altitude: effects of hyperventilation and acclimatization on cerebral blood flow and oxygenation. Wilderness Environ Med. 2015;26(2):133–141. doi:10.1016/j.wem.2014.10.001
  • Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:1–16. doi:10.1038/s41580-019-0188-1
  • Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15(1):551–578. doi:10.1146/annurev.cellbio.15.1.551
  • Leonard MO, Kieran NE, Howell K, et al. Reoxygenation‐specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia‐reperfusion injury. FASEB J. 2006;20(14):2624–2626. doi:10.1096/fj.06-5097fje
  • Lendahl U, Lee KL, Yang H, Poellinger L. Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet. 2009;10(12):821–832. doi:10.1038/nrg2665
  • Mela L, Goodwin CW, Miller LD. In vivo control of mitochondrial enzyme concentrations and activity by oxygen. Am J Physiol. 1976;231(6):1811–1816. doi:10.1152/ajplegacy.1976.231.6.1811
  • Zhuang J-G, Zhou Z-N. Protective effects of intermittent hypoxic adaptation on myocardium and its mechanisms. Neurosignals. 1999;8(4–5):316–322. doi:10.1159/000014602
  • Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circulatory Physiol. 2018;315(4):H756–H770. doi:10.1152/ajpheart.00725.2017
  • Bernaudin M, Nedelec A-S, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cerebral Blood Flow Metab. 2002;22(4):393–403. doi:10.1097/00004647-200204000-00003
  • Burtscher J, Maglione V, Di Pardo A, Millet GP, Schwarzer C, Zangrandi LA. Rationale for hypoxic and chemical conditioning in huntington’s disease. Int J Mol Sci. 2021;22:582. doi:10.3390/ijms22020582
  • Teppema LJ, Dahan A. The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev. 2010;90(2):675–754. doi:10.1152/physrev.00012.2009
  • Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med. 2008;233(6):627–650. doi:10.3181/0710-MR-267
  • Guillemin K, Krasnow MA. The hypoxic response: huffing and HIFing. Cell. 1997;89(1):9–12. doi:10.1016/S0092-8674(00)80176-2
  • Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med. 2017;108:668–682. doi:10.1016/j.freeradbiomed.2017.04.026
  • Feddersen B, Neupane P, Thanbichler F, et al. Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes. J Cereb Blood Flow Metab. 2015;35(11):1846–1851. doi:10.1038/jcbfm.2015.142
  • LaManna JC, Vendel LM, Farrell RM. Brain adaptation to chronic hypobaric hypoxia in rats. J Appl Physiol. 1992;72(6):2238–2243. doi:10.1152/jappl.1992.72.6.2238
  • LaManna JC, Chavez JC, Pichiule P. Structural and functional adaptation to hypoxia in the rat brain. J Exp Biol. 2004;207(Pt 18):3163–3169. doi:10.1242/jeb.00976
  • Boero JA, Ascher J, Arregui A, Rovainen C, Woolsey TA. Increased brain capillaries in chronic hypoxia. J Appl Physiol. 1999;86(4):1211–1219. doi:10.1152/jappl.1999.86.4.1211
  • De Strooper B, Karran E. The cellular phase of Alzheimer’s disease. Cell. 2016;164(4):603–615. doi:10.1016/j.cell.2015.12.056
  • Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol. 2014;307(10):R1181–R1197. doi:10.1152/ajpregu.00208.2014
  • Liu X, Xu D, Hall JR, et al. Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia. J Appl Physiol (1985). 2017;123(6):1689–1697. doi:10.1152/japplphysiol.00647.2017
  • Iwamoto E, Hanson BE, Bock JM, Casey DP. Intermittent hypoxia enhances shear-mediated dilation of the internal carotid artery in young adults. J Appl Physiol. 2020;129(3):603–611. doi:10.1152/japplphysiol.00274.2020
  • Kalaria RN, Spoors L, Laude EA, et al. Hypoxia of sleep apnoea: cardiopulmonary and cerebral changes after intermittent hypoxia in rats. Respir Physiol Neurobiol. 2004;140(1):53–62. doi:10.1016/j.resp.2004.01.003
  • Chávez JC, Agani F, Pichiule P, LaManna JC. Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol (1985). 2000;89(5):1937–1942. doi:10.1152/jappl.2000.89.5.1937
  • Bayer U, Likar R, Pinter G, et al. Intermittent hypoxic–hyperoxic training on cognitive performance in geriatric patients. Alzheimer’s & Dementia. 2017;3(1):114–122.
  • Schega L, Peter B, Törpel A, Mutschler H, Isermann B, Hamacher D. Effects of intermittent hypoxia on cognitive performance and quality of life in elderly adults: a pilot study. Gerontology. 2013;59(4):316–323. doi:10.1159/000350927
  • Schega L, Peter B, Brigadski T, et al. Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. J Sci Med Sport. 2016;19(11):941–945. doi:10.1016/j.jsams.2016.02.012
  • Serebrovska ZO, Serebrovska TV, Kholin VA, et al. Intermittent hypoxia-hyperoxia training improves cognitive function and decreases circulating biomarkers of alzheimer’s disease in patients with mild cognitive impairment: a Pilot Study. Int J Mol Sci. 2019;20(21):5405. doi:10.3390/ijms20215405
  • Wang H, Shi X, Schenck H, et al. Intermittent hypoxia training for treating mild cognitive impairment: a Pilot Study. Am J Alzheimers Dis Other Demen. 2020;35:1533317519896725. doi:10.1177/1533317519896725
  • Baillieul S, Chacaroun S, Doutreleau S, Detante O, Pépin JL, Verges S. Hypoxic conditioning and the central nervous system: a new therapeutic opportunity for brain and spinal cord injuries? Exp Biol Med. 2017;242(11):1198–1206. doi:10.1177/1535370217712691
  • Manukhina EB, Downey HF, Shi X, Mallet RT. Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Exp Biol Med (Maywood). 2016;241(12):1351–1363. doi:10.1177/1535370216649060
  • Manukhina EB, Goryacheva AV, Barskov IV, et al. Prevention of neurodegenerative damage to the brain in rats in experimental Alzheimer’s disease by adaptation to hypoxia. Neurosci Behav Physiol. 2010;40(7):737–743. doi:10.1007/s11055-010-9320-6
  • Correia SC, Machado NJ, Alves MG, Oliveira PF, Moreira PI. Intermittent hypoxic conditioning rescues cognition and mitochondrial bioenergetic profile in the triple transgenic mouse model of Alzheimer’s Disease. Int J Mol Sci. 2021;22(1):461. doi:10.3390/ijms22010461
  • Belikova MV, Kolesnikova EE, Serebrovskaya TV. Intermittent hypoxia and experimental Parkinson’s disease. Intermittent Hypoxia Human Dis. 2012;147–153.
  • Ma H, Zhang D, Li X, Ma H, Wang N, Wang Y. Long-term exposure to high altitude attenuates verbal and spatial working memory: evidence from an event-related potential study. Brain Behav. 2019;9(4):e01256. doi:10.1002/brb3.1256
  • Hill CM, Dimitriou D, Baya A, et al. Cognitive performance in high-altitude Andean residents compared with low-altitude populations: from childhood to older age. Neuropsychology. 2014;28(5):752. doi:10.1037/neu0000065
  • Richardson C, Hogan AM, Bucks RS, et al. Neurophysiological evidence for cognitive and brain functional adaptation in adolescents living at high altitude. Clin Neurophysiol. 2011;122(9):1726–1734. doi:10.1016/j.clinph.2011.02.001
  • Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B. Determinants of maximal oxygen uptake in severe acute hypoxia. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R291–303. doi:10.1152/ajpregu.00155.2002
  • Wehrlin JP, Hallen J. Linear decrease in.VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol Occup Physiol. 2006;96(4):404–412. doi:10.1007/s00421-005-0081-9
  • Saugy JJ, Rupp T, Faiss R, Lamon A, Bourdillon N, Millet GP. Cycling time trial is more altered in hypobaric than normobaric hypoxia. Med Sci Sports Exerc. 2016;48(4):680–688. doi:10.1249/MSS.0000000000000810
  • Richalet JP. CrossTalk opposing view: barometric pressure, independent of P O 2, is not the forgotten parameter in altitude physiology and mountain medicine. J Physiol. 2020;598(5):897–899. doi:10.1113/JP279160
  • Millet GP, Debevec T. CrossTalk proposal: barometric pressure, independent of P O 2, is the forgotten parameter in altitude physiology and mountain medicine. J Physiol. 2020;598(5):893–896. doi:10.1113/JP278673
  • Richalet JP, Kacimi R, Antezana AM. The control of cardiac chronotropic function in hypobaric hypoxia. Int J Sports Med. 1992;13(Suppl 1):S22–4. doi:10.1055/s-2007-1024582
  • Mourot L. Limitation of Maximal Heart Rate in Hypoxia: mechanisms and Clinical Importance. Front Physiol. 2018;9:972. doi:10.3389/fphys.2018.00972
  • Fukuda T, Maegawa T, Matsumoto A, et al. Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output during exercise. Int Heart J. 2010;51(3):170–175. doi:10.1536/ihj.51.170
  • Gore CJ, Hahn AG, Scroop GC, et al. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. Research Support, Non-U.S. Gov’t. J Appl Physiol. 1996;80(6):2204–2210. doi:10.1152/jappl.1996.80.6.2204
  • Mourot L, Millet GP. Is maximal heart rate decrease similar between normobaric versus hypobaric hypoxia in trained and untrained subjects? High Alt Med Biol. 2019;20(1):94–98. doi:10.1089/ham.2018.0104
  • Casillas JM, Gudjoncik A, Gremeaux V, Aulagne J, Besson D, Laroche D. Assessment tools for personalizing training intensity during cardiac rehabilitation: literature review and practical proposals. Ann Phys Rehabil Med. 2017;60(1):43–49. doi:10.1016/j.rehab.2016.01.011
  • Netzer NC, Chytra R, Kupper T. Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breathing. 2008;12(2):129–134. doi:10.1007/s11325-007-0149-3
  • Kong Z, Zang Y, Hu Y. Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults. Sleep Breathing. 2014;18(3):591–597. doi:10.1007/s11325-013-0922-4
  • Casey DP, Joyner MJ. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J Physiol. 2012;590(24):6321–6326. doi:10.1113/jphysiol.2012.242396
  • Casey DP, Madery BD, Curry TB, Eisenach JH, Wilkins BW, Joyner MJ. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise. J Physiol. 2010;588(Pt 2):373–385. doi:10.1113/jphysiol.2009.180489
  • Casey DP, Curry TB, Wilkins BW, Joyner MJ. Nitric oxide-mediated vasodilation becomes independent of beta-adrenergic receptor activation with increased intensity of hypoxic exercise. J Appl Physiol (1985). 2011;110(3):687–694. doi:10.1152/japplphysiol.00787.2010
  • Montero D, Lundby C. Effects of exercise training in hypoxia versus normoxia on vascular health. Sports Med. 2016;46(11):1725–1736. doi:10.1007/s40279-016-0570-5
  • Kleinnibbelink G, Stens NA, Fornasiero A, et al. The acute and chronic effects of high-intensity exercise in hypoxia on blood pressure and post-exercise hypotension: a randomized cross-over trial. Medicine (Baltimore). 2020;99(39):e22411. doi:10.1097/MD.0000000000022411
  • Jefferson JA, Simoni J, Escudero E, et al. Increased oxidative stress following acute and chronic high altitude exposure. High Alt Med Biol. 2004;5(1):61–69. doi:10.1089/152702904322963690
  • Magalhães J, Ascensão A, Viscor G, et al. Oxidative stress in humans during and after 4 hours of hypoxia at a simulated altitude of 5500 m. Aviat Space Environ Med. 2004;75(1):16–22.
  • Mrakic-Sposta S, Gussoni M, Dellanoce C, et al. Effects of acute and sub-acute hypobaric hypoxia on oxidative stress: a field study in the Alps. Eur J Appl Physiol. 2021;121(1):297–306. doi:10.1007/s00421-020-04527-x
  • Jain K, Suryakumar G, Prasad R, Ganju L. Upregulation of cytoprotective defense mechanisms and hypoxia-responsive proteins imparts tolerance to acute hypobaric hypoxia. High Alt Med Biol. 2013;14(1):65–77. doi:10.1089/ham.2012.1064
  • Singh M, Thomas P, Shukla D, Tulsawani R, Saxena S, Bansal A. Effect of subchronic hypobaric hypoxia on oxidative stress in rat heart. Appl Biochem Biotechnol. 2013;169(8):2405–2419. doi:10.1007/s12010-013-0141-2
  • Herrera EA, Farías JG, González-Candia A, Short SE, Carrasco-Pozo C, Castillo RL. Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats. Mar Drugs. 2015;13(2):838–860. doi:10.3390/md13020838
  • Aguilar M, González-Candia A, Rodríguez J, et al. Mechanisms of cardiovascular protection associated with intermittent hypobaric hypoxia exposure in a rat model: role of oxidative stress. Int J Mol Sci. 2018;19:366. doi:10.3390/ijms19020366
  • Guo HC, Zhang Z, Zhang LN, et al. Chronic intermittent hypobaric hypoxia protects the heart against ischemia/reperfusion injury through upregulation of antioxidant enzymes in adult guinea pigs. Acta Pharmacol Sin. 2009;30(7):947–955. doi:10.1038/aps.2009.57
  • Karar J, Dolt KS, Mishra MK, Arif E, Javed S, Pasha MA. Expression and functional activity of pro-oxidants and antioxidants in murine heart exposed to acute hypobaric hypoxia. FEBS Lett. 2007;581(24):4577–4582. doi:10.1016/j.febslet.2007.08.044
  • Estrada JA, Williams AG, Sun J, et al. δ-Opioid receptor (DOR) signaling and reactive oxygen species (ROS) mediate intermittent hypoxia induced protection of canine myocardium. Basic Res Cardiol. 2016;111(2):17. doi:10.1007/s00395-016-0538-5
  • He F, Ru X, Wen T. NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci. 2020;21. doi:10.3390/ijms21134777.
  • Shanmugam G, Narasimhan M, Conley RL, et al. Chronic endurance exercise impairs cardiac structure and function in middle-aged mice with impaired Nrf2 Signaling. Front Physiol. 2017;8:268. doi:10.3389/fphys.2017.00268
  • Stockmann C, Fandrey J. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. Clin Exp Pharmacol Physiol. 2006;33(10):968–979. doi:10.1111/j.1440-1681.2006.04474.x
  • Belaidi E, Morand J, Gras E, Pépin JL, Godin-Ribout D. Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications. Pharmacol Ther. 2016;168:1–11. doi:10.1016/j.pharmthera.2016.07.010
  • Huang YT, Liu CH, Yang YC, et al. ROS- and HIF1α-dependent IGFBP3 upregulation blocks IGF1 survival signaling and thereby mediates high-glucose-induced cardiomyocyte apoptosis. J Cell Physiol. 2019;234:13557–13570. doi:10.1002/jcp.28034
  • Jiang L, Zeng H, Ni L, et al. HIF-1α preconditioning potentiates antioxidant activity in ischemic injury: the role of sequential administration of dihydrotanshinone I and protocatechuic aldehyde in cardioprotection. Antioxid Redox Signal. 2019;31:227–242. doi:10.1089/ars.2018.7624
  • Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007;2007(407):cm8. doi:10.1126/stke.4072007cm8
  • Sugden PH. An overv iew of endothelin signaling in the cardiac myocyte. J Mol Cell Cardiol. 2003;35:871–886. doi:10.1016/s0022-2828(03)00153-6
  • Suzuki YJ. Growth factor signaling for cardioprotection against oxidative stress-induced apoptosis. Antioxid Redox Signal. 2003;5:741–749. doi:10.1089/152308603770380043
  • Ryou MG, Flaherty DC, Hoxha B, et al. Pyruvate-fortified cardioplegia evokes myocardial erythropoietin signaling in swine undergoing cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2009;297(5):H1914–22. doi:10.1152/ajpheart.01213.2008
  • Ryou MG, Liu R, Ren M, Sun J, Mallet RT, Yang SH. Pyruvate protects the brain against ischemia-reperfusion injury by activating the erythropoietin signaling pathway. Stroke. 2012;43(4):1101–1107. doi:10.1161/STROKEAHA.111.620088
  • Chen SM, Li YG, Zhang HX, et al. Hypoxia-inducible factor-1alpha induces the coronary collaterals for coronary artery disease. Coron Artery Dis. 2008;19(3):173–179. doi:10.1097/MCA.0b013e3282fa4b2c
  • Piperno A, Galimberti S, Mariani R, et al. Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project. Blood. 2011;117(10):2953–2959. doi:10.1182/blood-2010-08-299859
  • Lundby AK, Keiser S, Siebenmann C, Schäffer L, Lundby C. Kidney-synthesized erythropoietin is the main source for the hypoxia-induced increase in plasma erythropoietin in adult humans. Eur J Appl Physiol. 2014;114(6):1107–1111. doi:10.1007/s00421-014-2844-7
  • Sasaki H, Fukuda S, Otani H, et al. Hypoxic preconditioning triggers myocardial angiogenesis: a novel approach to enhance contractile functional reserve in rat with myocardial infarction. J Mol Cell Cardiol. 2002;34(3):335–348. doi:10.1006/jmcc.2001.1516
  • Aghajanian A, Zhang H, Buckley BK, Wittchen ES, Ma WY, Faber JE. Decreased inspired oxygen stimulates de novo formation of coronary collaterals in adult heart. J Mol Cell Cardiol. 2021;150:1–11. doi:10.1016/j.yjmcc.2020.09.015
  • Morganti A, Giussani M, Sala C, et al. Effects of exposure to high altitude on plasma endothelin-1 levels in normal subjects. J Hypertens. 1995;13:859–865. doi:10.1097/00004872-199508000-00006
  • Zhou Q, Yang S, Luo Y, et al. A randomly-controlled study on the cardiac function at he early stage of return to the plains after short-term exposure to high altitude. PLoS One. 2012;7:e31097. doi:10.1371/journal.pone.0031097
  • Kitta K, Clément SA, Remeika J, Blumberg JB, Suzuki YJ. Endothelin-1 induces phosphorylation of GATA-4 transcription factor in the HL-1 atrial-muscle cell line. Biochem J. 2001;359:375–380. doi:10.1042/0264-6021:3590375
  • Hautala N, Tenhunen O, Szokodi I, Ruskoaho H. Direct left ventricular wall stretch activates GATA4 binding in perfused rat heart: involvement of autocrine/paracrine pathways. Pflügers Arch. 2002;443:362–369. doi:10.1007/s004240100699
  • Verma S, Rao V, Weisel RD, et al. Novel cardioprotective effects of pravastatin in human ventricular cardiomyocytes subjected to hypoxia and reoxygenation: beneficial effects of statins independent of endothelial cells. J Surg Res. 2004;119:66–71. doi:10.1016/j.jss.2003.10.011
  • Kagamu H, Suzuki T, Arakawa M, Mitsui Y. Low oxygen enhances endothelin-1 (ET-1) production and responsiveness to ET-1 in cultured cardiac myocytes. Biochem Biophys Res Commun. 1994;202:1612–1618. doi:10.1006/bbrc.1994.2117
  • Kakinuma Y, Miyauchi T, Yuki K, Murakoshi N, Goto K, Yamaguchi I. Novel molecular mechanism of increased myocardial endothelin-1 expression in the failing heart involving the transcriptional factor hypoxia-inducible factor-1α induced for impaired myocardial energy metabolism. Circulation. 2001;103:2387–2394. doi:10.1161/01.cir.103.19.2387
  • Takanashi M, Miyauchi T, Kakinuma Y, Goto K, Yamaguchi I. Establishment of hypoxia inducible factor-1α overexpressing cells that produce endothelin-1. J Cardiovasc Pharmacol. 2004;44:S268–73. doi:10.1097/01.fjc.0000166282.01034.8f
  • Piuhola J, Kerkelä R, Keenan JI, Hampton MB, Richards AM, Pemberton CJ. Direct cardiac actions of erythropoietin (EPO): effects on cardiac contractility, BNP secretion and ischaemia/reperfusion injury. Clin Sci (Lond). 2008;114:293–304. doi:10.1042/CS20070229
  • Ren A, Yan X, Lu H, et al. Antagonism of endothelin-1 inhibits hypoxia-induced apoptosis in cardiomyocytes. Can J Physiol Pharmacol. 2008;86:536–540. doi:10.1139/Y08-051
  • Dhar P, Sharma VK, Hota KB, et al. Autonomic cardiovascular responses in acclimatized lowlanders on prolonged stay at high altitude: a longitudinal follow up study. PLoS One. 2014;9(1):e84274. doi:10.1371/journal.pone.0084274
  • Li Y, Shi L, Wu N, et al. [Effects of hyperbaric oxygen preconditioning on human stress responses during acute exposure to high altitude]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2015;33(10):731–734.
  • Dhar P, Sharma VK, Das SK, Barhwal K, Hota SK, Singh SB. Differential responses of autonomic function in sea level residents, acclimatized lowlanders at >3500 m and Himalayan high altitude natives at >3500 m: a cross-sectional study. Respir Physiol Neurobiol. 2018;254:40–48. doi:10.1016/j.resp.2018.04.002
  • Wu L, Tan JL, Wang ZH, et al. ROS generated during early reperfusion contribute to intermittent hypobaric hypoxia-afforded cardioprotection against postischemia-induced Ca(2+) overload and contractile dysfunction via the JAK2/STAT3 pathway. J Mol Cell Cardiol. 2015;81:150–161. doi:10.1016/j.yjmcc.2015.02.015
  • Mallet RT, Ryou MG, Williams AG, Howard L, Downey HF. β1-Adrenergic receptor antagonism abrogates cardioprotective effects of intermittent hypoxia. Basic Res Cardiol. 2006;101(5):436–446. doi:10.1007/s00395-006-0599-y
  • Müller FU, Lewin G, Baba HA, et al. Heart-directed expression of a human cardiac isoform of cAMP-response element modulator in transgenic mice. J Biol Chem. 2005;280(8):6906–6914. doi:10.1074/jbc.M407864200
  • El Jamali A, Freund C, Rechner C, Scheidereit C, Dietz R, Bergmann MW. Reoxygenation after severe hypoxia induces cardiomyocyte hypertrophy in vitro: activation of CREB downstream of GSK3beta. FASEB J. 2004;18(10):1096–1098. doi:10.1096/fj.03-1054fje
  • Tomita H, Nazmy M, Kajimoto K, Yehia G, Molina CA, Sadoshima J. Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation. Circ Res. 2003;93(1):12–22. doi:10.1161/01.RES.0000079794.57578.F1
  • Schulte JS, Fehrmann E, Tekook MA, et al. Cardiac expression of the CREM repressor isoform CREM-IbΔC-X in mice leads to arrhythmogenic alterations in ventricular cardiomyocytes. Basic Res Cardiol. 2016;111(2):15. doi:10.1007/s00395-016-0532-y
  • ASA/JPL-Caltech. Aster Global Digital Elevation Map (GDEM). Available at: https://asterweb.jpl.nasa.gov/images/GDEM-10km-colorized.png. Accessed February 28, 2021.