130
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Ventricular Function and Cardio-Ankle Vascular Index in Patients With Pulmonary Artery Hypertension

ORCID Icon, & ORCID Icon
Pages 889-904 | Received 30 Aug 2022, Accepted 18 Nov 2022, Published online: 28 Dec 2022

References

  • Galiè N, McLaughlin V, Rubi L, Simonneau G. An overview of the 6th world symposium on pulmonary hypertension. Eur Respir J. 2019;53:1802148. doi:10.1183/13993003.02148-2018
  • Simonneau G, Montani D, Celermajer D, et al. Number 4 in the series “Proceedings of the 6th World Symposium on Pulmonary Hypertension” Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:1801913. doi:10.1183/13993003.01913-2018
  • Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119. doi:10.1093/eurheartj/ehv317
  • Kalogeropoulos A, Georgiopoulou V, Borlaug B, Gheorghiade M, Butler J. Left ventricular dysfunction with pulmonary hypertension. part 2: prognosis, noninvasive evaluation, treatment, and future research. Circ Heart Fail. 2013;6(3):584–593. doi:10.1161/CIRCHEARTFAILURE.112.000096
  • Meng H, Chandrasekaran K, Villarraga H, et al. Right and left ventricular interaction in pulmonary hypertension: insight from velocity vector imaging. Echocardiography. 2019;36(5):877–887. doi:10.1111/echo.14328
  • Hardegree EL, Sachdev A, Fenstad ER, et al. Impaired left ventricular mechanics in pulmonary arterial hypertension: identification of a cohort at high risk. Circ Heart Fail. 2013;6(4):748–755. doi:10.1161/CIRCHEARTFAILURE.112.000098
  • Tantawy S, Shaaban M, Elkafrawy F, et al. Longitudinal RV and LV strain in pulmonary hypertension patients using CMR feature tracking. Eur Heart J Cardiovasc Imaging. 2019;20(Supplement 2):161. doi:10.1093/ehjci/jez117.024
  • Han J-C, Guild S-J, Pham T, et al. Left-ventricular energetics in pulmonary arterial hypertension-induced right-ventricular hypertrophic failure. Front Physiol. 2018;8:1115. doi:10.3389/fphys.2017.01115
  • Sjögren H, Kjellström B, Bredfelt A, et al. Underfilling decreases left ventricular function in pulmonary arterial hypertension. Int J Cardiovasc Imaging. 2021;37(5):1745–1755. doi:10.1007/s10554-020-02143-6
  • Shirai K, Asmar R, Orimo H. Cardio-Ankle Vascular Index: Overview & Clinical Application. Tokyo: COMPASS Co. Ltd; 2021.
  • Radchenko G, Zhyvylo IO, Titov EY, Sirenko Y. Systemic arterial stiffness in new diagnosed idiopathic pulmonary arterial hypertension patients. Vasc Health Risk Manag. 2020;16:29–39. doi:10.2147/VHRM.S230041
  • Radchenko GD, Sirenko YM. Prognostic significance of systemic arterial stiffness evaluated by cardio-ankle vascular index in patients with idiopathic pulmonary hypertension. Vasc Health Risk Manag. 2021;17:77–93. doi:10.2147/VHRM.S294767
  • Guyatt G, Sullivan M, Thompson P, et al. The 6-minute walk: a new measure of exercise capacity in subjects with chronic heart failure. Can Med Assoc J. 1985;132:919–923. PMC1345899.
  • ATS Statement. Guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–117. doi:10.1164/ajrccm.166.1.at1102
  • Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39. doi:10.1016/j.echo.2014.10.003
  • Lindqvist P, Calcutteea A, Henein M. Echocardiography in the assessment of right heart function. Eu J Echocar. 2008;9:225–234. doi:10.1016/j.euje.2007.04.002
  • Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5:918–927. doi:10.1016/s0735-1097(85)80433-2
  • Kuznetsova T, Herbots L, Richart T, et al. Left ventricular strain and strain rate in a general population. Eur Heart J. 2008;29:2014–2023. doi:10.1093/eurheartj/ehn280
  • Burns A, Gerche A, D’hooge J, MacIsaac A, Prior D. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eu J Echocar. 2010;11:283–289. doi:10.1093/ejechocard/jep214
  • Kleijn S, Pandian N, Thomas J, et al. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16:410–416. doi:10.1093/ehjci/jeu21
  • Badano L, Muraru D, Parati G, Haugaa K, Voigt JU. How to do right ventricular strain. Eur Heart J Cardiovasc Imaging. 2020;21:825–827. doi:10.1093/ehjci/jeaa126
  • Cheuk-Kwan S. Cardio-ankle vascular index (CAVI) as an indicator of arterial stiffness Integrated. Blood Pressure Control. 2013;6:27–38. doi:10.2147/IBPC.S34423
  • Yambe T, Yoshizawa M, Saijo Y, et al. Brachio-ankle pulse wave velocity and cardio-ankle vascular index (CAVI). Biomed Pharmacother. 2004;58(Suppl 1):S95–S98. doi:10.1016/S0753-3322(04)80015-5
  • Miyoshi T, Ito H. Assessment of arterial stiffness using the cardio-ankle vascular index. Pulse. 2016;4(1):11–23. doi:10.1159/000445214
  • Silvestry F. Pulmonary artery catheterization: interpretation of hemodynamic values and waveforms in adults; 2022. Available from: https://www.uptodate.com/contents/pulmonary-artery-catheterization-interpretation-of-hemodynamic-values-and-waveforms-in-adults. Accessed December 6, 2022.
  • Anwar A, Ruffenach G, Mahajan A, Eghbali M, Umar S. Novel biomarkers for pulmonary arterial hypertension. Respir Res. 2016;17:88. doi:10.1186/s12931-016-0396-6
  • Benedetto P, Guggino G, Manzi G, et al. Interleukin-32 in systemic sclerosis, a potential new biomarker for pulmonary arterial hypertension. Arthritis Res Ther. 2020;22:127. doi:10.1186/s13075-020-02218-8
  • Luk K, Ip C, Gong M, et al.; International Health Informatics Study (IHIS) Network. A meta-analysis of soluble suppression of tumorigenicity 2 (sST2) and clinical outcomes in pulmonary hypertension. J Geriatr Cardiol. 2017;14(12):766–771. doi:10.11909/j.issn.1671-5411.2017.12.007
  • Nold-Petry CA, Nold MF, Zepp JA, Kim SH, Voelkel NF, Dinarello CA. IL-32-dependent effects of IL-1b on endothelial cell functions. Proc Natl Acad Sci U S A. 2009;106(10):3883–3888. doi:10.1073/pnas.0813334106
  • Nold-Petry CA, Rudloff I, Baumer Y, et al. IL-32 promotes angiogenesis. J Immunol. 2014;192:589–602. doi:10.4049/jimmunol.1202802
  • Shimony A, Eisenberg MJ, Rudski LG, et al. Prevalence and impact of coronary artery disease in patients with pulmonary arterial hypertension. Am J Cardiol. 2011;108:460–464. doi:10.1016/j.amjcard.2011.03.066
  • Anand V, Roy SS, Archer SL, et al. Trends and outcomes of pulmonary arterial hypertension-related hospitalizations in the United States: analysis of the nationwide inpatient sample database from 2001 through 2012. JAMA Cardiol. 2016;1:1021–1029. doi:10.1001/jamacardio.2016.3591
  • Hughes R, Tong J, Oates C, Lordan J, Corris PA. Evidence for systemic endothelial dysfunction in patients and first-order relatives with pulmonary arterial hypertension. Chest. 2005;128(6 Suppl):617S. doi:10.1378/chest.128.6_suppl.617S
  • Malenfant S, Brassard P, Paquette M, et al. Compromised cerebrovascular regulation and cerebral oxygenation in pulmonary arterial hypertension. J Am Heart Assoc. 2017;6:e006126. doi:10.1161/JAHA.117.006126
  • Nickel NP, de Jesus Perez VA, Zamanian RT, et al. Low-grade albuminuria in pulmonary arterial hypertension. Pulm Circ. 2019;9(2):1–9. doi:10.1177/2045894018824564
  • Riccieri V, Vasile M, Iannace N, et al. Systemic sclerosis patients with and without pulmonary arterial hypertension: a nailfold capillaroscopy study. Rheumatology. 2013;52:1525–1528. doi:10.1093/rheumatology/ket168
  • Ye Z, Pellikka P, Kullo I. Sex differences in associations of cardio-ankle vascular index with left ventricular function and geometry. Vasc Med. 2017;22:465–472. doi:10.1177/1358863X17725810
  • Kim H, Kim HS, Yoon HJ, et al. Association of cardio-ankle vascular index with diastolic heart function in hypertensive patients. Clin Exp Hypertens. 2014;36:200–205. doi:10.3109/10641963.2013.804544
  • Namba T, Masaki N, Matsuo Y, et al. Arterial stiffness is significant associated with left ventricular diastolic dysfunction in patients with cardiovascular diseases. Int Heart J. 2016;57:729–735. doi:10.1536/ihj.16-112
  • Mizuguchi Y, Oishi T, Tanaka H, et al. Arterial stiffness is associated with left ventricular diastolic function in patients with cardiovascular risk factors; early detection with the use of cardio-ankle vascular index and ultrasonic strain image. J Card Fail. 2007;13:744–751. doi:10.1016/j.cardfail.2007.05.010
  • Noguchi S, Masugata H, Senda S, et al. Correlation of arterial stiffness to left ventricular function in patients with reduced ejection fraction. Tohoku J Exp Med. 2011;225:145–151. doi:10.1620/tjem.225.145
  • Carluccio E, Biagioli P, Alunni G, et al. Improvement of myocardial performance (Tei) index closely reflects intrinsic improvement of cardiac function: assessment in revascularized hibernating myocardium. Echocardiogr Mt Kisco N. 2012;29:298–306. doi:10.1111/j.1540-8175.2011.01575.x
  • Hodges M, Halpern BL, Friesinger GC, Dagenais GR. Left ventricular preejection period and ejection time in patients with acute myocardial infarction. Circulation. 1972;45:933–942. doi:10.1161/01.cir.45.5.933
  • Boudoulas H. Systolic time intervals. Eur Heart J. 1990;11(Suppl I):93–104. doi:10.1093/eurheartj/11.suppl_i.93
  • Weissler AM, Harris WS, Schoenfeld CD. Systolic time intervals in heart failure in man. Circulation. 1968;37:149–159. doi:10.1161/01.cir.37.2.149
  • Weissler AM, O’Neill WW, Sohn YH, Stack RS, Chew PC, Reed AH. Prognostic significance of systolic time intervals after recovery from myocardial infarction. Am J Cardiol. 1981;48:995–1002. doi:10.1016/0002-9149(81)90311-8
  • Biering-Sørensen T, Roca G, Hegde S, et al. Left ventricular ejection time is an independent predictor of incident heart failure in a community based cohort. Eur J Heart Fail. 2018;20(7):1106–1114. doi:10.1002/ejhf.928
  • Tei C, Dujardin KS, Hodge DO, Kyle RA, Tajik AJ, Seward JB. Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J Am Coll Cardiol. 1996;28:658–664. doi:10.1016/s0140-6736(79)92228-1
  • Lewis RP, Boudoulas H, Welch TG, Forester WF. Usefulness of systolic time intervals in coronary artery disease. Am J Cardiol. 1976;37:787–796. doi:10.1016/0002-9149(76)90376-3
  • Dodek A, Burg JR, Kloster FR. Systolic time intervals in chronic hypertension: alterations and response to treatment. Chest. 1975;68:51–55. doi:10.1378/chest.68.1.51
  • Shigematsu Y, Hamada M, Kokubu T. Significance of systolic time intervals in predicting prognosis of primary pulmonary hypertension. J Cardiol. 1988;18:1109–1114.
  • Sztrymf B, Günther S, Artaud-Macari E, et al. Left ventricular ejection time in acute heart failure complicating precapillary pulmonary hypertension. Chest. 2013;144:1512–1520. doi:10.1378/chest.12-2659
  • Cleland JGF, Teerlink JR, Senior R, et al. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging Phase 2 trial. Lancet Lond Engl. 2011;378:676–683. doi:10.1016/S0140-6736(11)61126-4
  • Malik FI, Hartman JJ, Elias KA, et al. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science. 2011;331:1439–1443. doi:10.1093/rheumatology/29.3.166
  • Biering-Sørensen T, Mogelvang R, Søgaard P, et al. Prognostic value of cardiac time intervals by tissue Doppler imaging m-mode in patients with acute ST-segment-elevation myocardial infarction treated with primary percutaneous coronary intervention. Circ Cardiovasc Imaging. 2013;6:457–465. doi:10.1161/CIRCIMAGING.112.000230
  • Teodorescu P, Guţiu I, Predescu T, Frîncu P, Cucu N, Carp C. Prognosis of acute myocardial infarction using systolic time intervals recorded on the carotidogram. Médecine Interne. 1981;19:131–136.
  • Northover BJ. Left ventricular systolic time intervals in patients with acute myocardial infarction. Br Heart J. 1980;43:506–513. doi:10.1136/hrt.43.5.506
  • Northover BJ. Estimation of the risk of death during the first year after acute myocardial infarction from systolic time intervals during the first week. Br Heart J. 1989;62:429–437. doi:10.3389/fnagi.2021.755160
  • Migrino R, Mareedu R, Eastwood D, Bowers M, Harmann L, Hari P. Left ventricular ejection time on echocardiography predicts long-term mortality in light chain. Amyloidosis J Am Soc Echocardiogr. 2009;22(12):1396–1402. doi:10.1016/j.echo.2009.09.012
  • Her C, Koike H, O’Connell J. Estimated right ventricular systolic time interval for the assessment of right ventricular function in acute respiratory distress syndrome. Shock. 2009;31(5):460–465. doi:10.1097/SHK.0b013e31818ba1f4
  • Habash S, Laser KT, Moosmann J, et al. Normal values of the pulmonary artery acceleration time (PAAT) and the right ventricular ejection time (RVET) in children and adolescents and the impact of the PAAT/RVET-index in the assessment of pulmonary hypertension. Int J Cardiovasc Imaging. 2019;35(2):295–306. doi:10.1007/s10554-019-01540-w
  • Chang S, Lin C, Hsiao S, et al. Pulmonary hypertension and left heart function: insights from tissue Doppler imaging and myocardial performance index. Echocardiography. 2007;24(4):366–373. doi:10.1111/j.1540-8175.2007.00405.x
  • Mincewicz G, Siergiejko G, Piepiorka M, Świdnicka-siergiejko A, Siergiejko Z, Krzykowski G. Functional assessment of the right ventricle in patients with bronchial asthma of various severity. Postepy Dermatol Alergol. 2021;38(1):52–56. doi:10.5114/ada.2021.104278
  • Ali AA. Ventricular ejection time: a noninvasive echocardiographic parameter for assessment of severity of congestive heart failure in cardiomyopathic patients. Scientific J Al-Azhar Med Facul. 2019;3:722–729.
  • Berglund F, Piña P, Herrera C. Right ventricle in heart failure with preserved ejection fraction. Heart. 2020;106(23):1798–1804. doi:10.1136/heartjnl-2020-317342
  • Lopez-Candale A, Edelman K, Gulyasy B, Candales M. Differences in the duration of total ejection between right and left ventricles in chronic pulmonary hypertension Echocardiography. Echocardiography. 2011;28(5):509–515. doi:10.1111/j.1540-8175.2010.01377.x
  • Günther S, Sztrymf B, Savale L, et al. Relation between left ventricular ejection time and pulmonary hemodynamics in pulmonary hypertension. Int J Cardiol. 2015;184:763–765. doi:10.1016/j.ijcard.2015.02.101
  • Freed B, Gomberg-Maitland M. Pulmonary arterial hypertension with right ventricular failure. The left forgotten ventricle. Chest J. 2013;144:1435. doi:10.1378/chest.13-1193
  • Forfia P, Fisher M, Mathai S, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–1041. doi:10.1164/rccm.200604-547OC
  • Alerhand S, Hickey SM. Tricuspid annular plane systolic excursion (TAPSE) for risk stratification and prognostication of patients with pulmonary embolism. Emerg Med. 2020;58(3):449–456. doi:10.1016/j.jemermed.2019.09.017
  • Howard LS. Prognostic factors in pulmonary arterial hypertension: assessing the course of the disease. Eur Respir Rev. 2011;20:236–242. doi:10.1183/09059180.00006711
  • Tousignant C, Kim H, Papa F, Mazer CD. Evaluation of TAPSE as a measure of right ventricular output. Can J Anaesth. 2012;59(4):376–383. doi:10.1007/s12630-011-9659-3
  • Hoette S, Creuzé N, Günther S, et al. RV fractional area change and TAPSE as predictors of severe right ventricular dysfunction in pulmonary hypertension: a CMR study. Lung. 2018;196(2):157–164. doi:10.1007/s00408-018-0089-7
  • Fuertes J, Gomez A, Rivas A, Murga I, Parraza N. Correlation study between three different methods that estimate right ventricular function after an acute pulmonary embolism (PE). Eur Respir J. 2016;48:PA2463. doi:10.1183/13993003.congress-2016.PA2463
  • Michalski M, Haas N, Pozza R, et al. Tricuspid Annular Plane Systolic Excursion (TAPSE) correlates with mean pulmonary artery pressure especially 10 years after pediatric heart transplantation. Clin Transplant. 2022:e14710. doi:10.1111/ctr.14710
  • Ghio S, Klersy C, Magrini G, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140:272–278. doi:10.1016/j.ijcard.2008.11.051
  • Corrêa R, de Oliveira F, Barbosa M, et al. Left ventricular function in patients with pulmonary arterial hypertension: the role of two-dimensional speckle tracking strain. Echocardiography. 2016;33:1326–1333. doi:10.1111/echo.13267
  • Negishi K, Negishi T, Kurosawa K, et al. Practical guidance in echocardiographic assessment of global longitudinal strain. JACC Cardiovasc Imaging. 2015;82015:489–492. doi:10.1016/j.jcmg.2014.06.013