312
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Genetic Variants in PHACTR1 & LPL Mediate Restenosis Risk in Coronary Artery Patients

ORCID Icon, ORCID Icon, , , , , , , & ORCID Icon show all
Pages 83-92 | Received 27 Oct 2022, Accepted 25 Dec 2022, Published online: 16 Feb 2023

References

  • Agrawal H, Teleb M, Lahsaei S, Carbajal L, Montanez R, Carrozza JP. Routine angiographic follow-up after coronary artery disease revascularization: is seeing believing? Curr Cardiol Rep. 2018;20(3):17. doi:10.1007/s11886-018-0957-z
  • Bachar BJ, Manna B. Coronary Artery Bypass Graft. Treasure Island (FL): StatPearls Publishing; 2022.
  • Smith SC, Dove JT, Jacobs AK, et al. ACC/AHA Guidelines for Percutaneous Coronary Intervention (Revision of the 1993 PTCA Guidelines)—Executive Summary. Circulation. 2001;103(24):3019–3041. doi:10.1161/01.CIR.103.24.3019
  • Pleva L, Kukla P, Hlinomaz O. Treatment of coronary in-stent restenosis: a systematic review. J Geriatr Cardiol. 2018;15(2):173–184. doi:10.11909/j.issn.1671-5411.2018.02.007
  • Kim MS, Dean LS. In-Stent Restenosis. Cardiovasc Ther. 2011;29(3):190–198. doi:10.1111/j.1755-5922.2010.00155.x
  • Beerkens FJ, Claessen BE, Mahan M, et al. Contemporary coronary artery bypass graft surgery and subsequent percutaneous revascularization. Nat Rev Cardiol. 2022;19(3):195–208. doi:10.1038/s41569-021-00612-6
  • Alexander JH, Smith PK. Coronary-artery bypass grafting. N Engl J Med. 2016;374(20):1954–1964. doi:10.1056/NEJMra1406944
  • Gori T. Restenosis after coronary stent implantation: cellular mechanisms and potential of endothelial progenitor cells (a short guide for the interventional cardiologist). Cells. 2022;11(13):2094. doi:10.3390/cells11132094
  • Xenogiannis I, Zenati M, Bhatt DL, et al. Saphenous vein graft failure: from pathophysiology to prevention and treatment strategies. Circulation. 2021;144(9):728–745. doi:10.1161/CIRCULATIONAHA.120.052163
  • Douglas JS, Holmes DR, Kereiakes DJ, et al. Coronary stent restenosis in patients treated with cilostazol. Circulation. 2005;112(18):2826–2832. doi:10.1161/CIRCULATIONAHA.104.530097
  • Weintraub WS, Kosinski AS, Brown CL 3rd, King SB 3rd:. Can restenosis after coronary angioplasty be predicted from clinical variables? J Am Coll Cardiol. 1993;21(1):6–14. doi:10.1016/0735-1097(93)90711-9
  • Vertes M, Nguyen DT, Szekely G, Berczi Á, Dosa E. Middle and Distal Common Carotid Artery Stenting: long-Term Patency Rates and Risk Factors for In-Stent Restenosis. Cardiovasc Intervent Radiol. 2020;43(8):1134–1142. doi:10.1007/s00270-020-02522-5
  • Agema WR, et al. Current PTCA practice and clinical outcomes in The Netherlands: the real world in the pre-drug-eluting stent era. Eur Heart J. 2004;25(13):1163–1170. doi:10.1016/j.ehj.2004.05.006
  • Kastrati A, Schomig A, Elezi S, Schuuhlen H, Wilhelm M, Dirschinger J. Interlesion Dependence of the Risk for Restenosis in Patients With Coronary Stent Placement in Multiple Lesions. Circulation. 1998;97(24):2396–2401. doi:10.1161/01.cir.97.24.2396
  • Gilbert J, Raboud J, Zinman B. Meta-analysis of the effect of diabetes on restenosis rates among patients receiving coronary angioplasty stenting. Diabetes Care. 2004;27(4):990–994. doi:10.2337/diacare.27.4.990
  • Smith SA, Newby N, Bond B. Ending Restenosis: inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells. 2019;8(11):11. doi:10.3390/cells8111447
  • Jukema JW, Verschuren JJW, Ahmed TAN, Quax PHA. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nat Rev Cardiol. 2012;9(1):53–62. doi:10.1038/nrcardio.2011.132
  • Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 1998;31(1):224–230. doi:10.1016/s0735-1097(97)00450-6
  • Dangas G, Kuepper F. Cardiology patient page. Restenosis: repeat narrowing of a coronary artery: prevention and treatment. Circulation. 2002;105(22):2586–2587. doi:10.1161/01.cir.0000019122.00032.df
  • Xu X, Liu X, Yu L, Ma J, Yu S, Ni M. Impact of intracoronary nicorandil before stent deployment in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Exp Ther Med. 2020;19(1):137–146. doi:10.3892/etm.2019.8219
  • Verschuren JJW, Trompet S, Postmus I, et al. Systematic testing of literature reported genetic variation associated with coronary restenosis: results of the GENDER Study. PLoS One. 2012;7(8):e42401. doi:10.1371/journal.pone.0042401
  • Vargas-Alarcón G, Ramírez-Bello J, Peña-Duque MA, Martínez-Ríos MA, Delgadillo-Rodríguez H, Fragoso JM. CASP1 Gene Polymorphisms and BAT1-NFKBIL-LTA-CASP1 Gene–Gene Interactions Are Associated with Restenosis after Coronary Stenting. Biomolecules. 2022;12(6):765. doi:10.3390/biom12060765
  • Liu Y-W, Huang M-S, Hsu L-W, et al. Genetic risk model for in-stent restenosis of second-and third-generation drug-eluting stents. iScience. 2021;24(9):103082. doi:10.1016/j.isci.2021.103082
  • Zholdybayeva EV, Talzhanov YA, Aitkulova AM, et al. Genetic risk factors for restenosis after percutaneous coronary intervention in Kazakh population. Hum Genomics. 2016;10(1):15. doi:10.1186/s40246-016-0077-z
  • Verschuren JJW, Trompet S, Sampietro ML, et al. Pathway analysis using genome-wide association study data for coronary restenosis – a potential role for the PARVB gene. PLoS One. 2013;8(8):e70676. doi:10.1371/journal.pone.0070676
  • Youhanna S, Platt DE, Rebeiz A, et al. Parental consanguinity and family history of coronary artery disease strongly predict early stenosis. Atherosclerosis. 2010;212(2):559–563. doi:10.1016/j.atherosclerosis.2010.07.013
  • Hager J, Kamatani Y, Cazier J-B, et al. Genome-wide association study in a Lebanese cohort confirms PHACTR1 as a major determinant of coronary artery stenosis. PLoS One. 2012;7(6):e38663. doi:10.1371/journal.pone.0038663
  • Wakim V, Abi Khalil E, Salloum AK, Khazen G, Ghassibe-Sabbagh M, Zalloua PA. New susceptibility alleles associated with severe coronary artery stenosis in the Lebanese population. BMC Med Genomics. 2021;14(1):90. doi:10.1186/s12920-021-00942-x
  • Rader DJ, deGoma EM. Approach to the Patient with Extremely Low HDL-Cholesterol. J Clin Endocrinol Metab. 2012;97(10):3399–3407. doi:10.1210/jc.2012-2185
  • Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J. 2001;15(12):2073–2084. doi:10.1096/fj.01-0273rev
  • Tocci G, Barbato E, Coluccia R, et al. Blood pressure levels at the time of percutaneous coronary revascularization and risk of coronary in-stent restenosis. Am J Hypertens. 2016;29(4):509–518. doi:10.1093/ajh/hpv131
  • Tocci G, Modestino A, Coluccia R, et al. Coronary intrastent restenosis and blood pressure levels: retrospective analysis of a large cohort of patients with coronary single vessel disease: 1c.06. J Hypertens. 2010;28:e8. doi:10.1097/01.hjh.0000378255.81414.b5
  • Brandes RP. Endothelial dysfunction and hypertension. Hypertension. 2014;64(5):924–928. doi:10.1161/HYPERTENSIONAHA.114.03575
  • Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 2001;104(3):365–372. doi:10.1161/01.CIR.104.3.365
  • Ross R, Epstein FH. Atherosclerosis — an inflammatory disease. N Eng J Med. 1999;340(2):115–126. doi:10.1056/nejm199901143400207
  • Lexis CPH, Rahel BM, Meeder JG, Zijlstra F, van derHorst IC. van der Horst ICC: the role of glucose lowering agents on restenosis after percutaneous coronary intervention in patients with diabetes mellitus. Cardiovasc Diabetol. 2009;8(1):41. doi:10.1186/1475-2840-8-41
  • Trabattoni D, Fabbiocchi F, Montorsi P, et al. Angiographic patterns of in-stent restenosis in men and women. Ital Heart J. 2005;6(2):138–142.
  • Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20(6):1595–1599. doi:10.1161/01.atv.20.6.1595
  • Li TD, Zeng ZH. Adiponectin as a potential therapeutic target for the treatment of restenosis. Biomed Pharmacother. 2018;101:798–804. doi:10.1016/j.biopha.2018.03.003
  • Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol. 2003;148(3):293–300. doi:10.1530/eje.0.1480293
  • Jarray R, Pavoni S, Borriello L, et al. Disruption of phactr-1 pathway triggers pro-inflammatory and pro-atherogenic factors: new insights in atherosclerosis development. Biochimie. 2015;118:151–161. doi:10.1016/j.biochi.2015.09.008
  • Aherrahrou R, Aherrahrou Z, Schunkert H, Erdmann J. Coronary artery disease associated gene Phactr1 modulates severity of vascular calcification in vitro. Biochem Biophys Res Commun. 2017;491(2):396–402. doi:10.1016/j.bbrc.2017.07.090
  • Jarray R, Allain B, Borriello L, et al. Depletion of the novel protein PHACTR-1 from human endothelial cells abolishes tube formation and induces cell death receptor apoptosis. Biochimie. 2011;93(10):1668–1675. doi:10.1016/j.biochi.2011.07.010
  • Allain B, Jarray R, Borriello L, Leforban B, Dufour S. Neuropilin-1 regulates a new VEGF-induced gene, Phactr-1, which controls tubulogenesis and modulates lamellipodial dynamics in human endothelial cells. Cell Signal. 2012;24(1):214–223. doi:10.1016/j.cellsig.2011.09.003
  • Ma X, Su M, He Q, et al. PHACTR1, a coronary artery disease risk gene, mediates endothelial dysfunction. Front Immunol. 2022;13:958677. doi:10.3389/fimmu.2022.958677
  • Liu C, Li L, Guo D, et al. Lipoprotein lipase transporter GPIHBP1 and triglyceride-rich lipoprotein metabolism. Clinica Chimica Acta. 2018;487:33–40. doi:10.1016/j.cca.2018.09.020
  • Shimada M, Ishibashi S, Inaba T, et al. Suppression of diet-induced atherosclerosis in low density lipoprotein receptor knockout mice overexpressing lipoprotein lipase. Proc Natl Acad Sci U S A. 1996;93(14):7242–7246. doi:10.1073/pnas.93.14.7242
  • Weinstock PH, Bisgaier CL, Aalto-Setälä K, et al. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J Clin Invest. 1995;96(6):2555–2568. doi:10.1172/jci118319
  • Thirunavukkarasu M, Juhasz B, Zhan L, et al. VEGFR1 (Flt-1±) gene knockout leads to the disruption of VEGF-mediated signaling through the nitric oxide/heme oxygenase pathway in ischemic preconditioned myocardium. Free Radic Biol Med. 2007;42(10):1487–1495. doi:10.1016/j.freeradbiomed.2007.02.011
  • Zhao Q, Egashira K. Essential role of vascular endothelial growth factor and Flt-1 signals in neointimal formation after periadventitial injury. Arterioscler Thromb Vasc Biol. 2004;24(12):2284–2289. doi:10.1161/01.ATV.0000147161.42956.80
  • Huang T, Wang L, Bai M, et al. Influence of IGF2BP2, HMG20A, and HNF1B genetic polymorphisms on the susceptibility to Type 2 diabetes mellitus in Chinese Han population. Biosci Rep. 2020;40(5). doi:10.1042/BSR20193955
  • Li R, Meng S, Ji M, et al. HMG20A inhibit adipogenesis by transcriptional and epigenetic regulation of MEF2C expression. Int J Mol Sci. 2022;23(18). doi:10.3390/ijms231810559
  • Mikhailova SV, Ivanoshchuk DE. Innate-immunity genes in obesity. J Pers Med. 2021;11(11). doi:10.3390/jpm11111201
  • Qin Y, Wu K, Zhang Z, et al. NLRC3 deficiency promotes cutaneous wound healing due to the inhibition of p53 signaling. Biochim Biophys Acta Mol Basis Dis. 2022;1868(11):166518. doi:10.1016/j.bbadis.2022.166518
  • Chan GH, Chan E, Kwok CT, Leung GP, Lee SM, Seto SW. The role of p53 in the alternation of vascular functions. Front Pharmacol. 2022;13:981152. doi:10.3389/fphar.2022.981152
  • Gorgoulis VG, Pratsinis H, Zacharatos P, et al. p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest. 2005;85(4):502–511. doi:10.1038/labinvest.3700241